Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-3=2m+4\)
\(\Leftrightarrow x=2m+4+3\)
\(\Leftrightarrow x=2m+7\)
Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)
b) \(2x-5=m+8\)
\(\Leftrightarrow2x=m+8+5\)
\(\Leftrightarrow2x=m+13\)
\(\Leftrightarrow x=\dfrac{m+13}{2}\)
Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)
c) \(x-2=3m+4\)
\(\Leftrightarrow x=3m+4+2\)
\(\Leftrightarrow x=3m+6\)
Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)
a. Ta có x – 3 = 2m + 4
⇔ x = 2m + 4 + 3
⇔ x = 2m + 7
Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > \(\dfrac{-7}{2}\)
b. Ta có: 2x – 5 = m + 8
⇔ 2x = m + 8 + 5
⇔ 2x = m + 13
⇔ x = \(\dfrac{-\left(x+13\right)}{2}\)
Phương trình có nghiệm số âm khi \(\dfrac{-\left(m+13\right)}{2}\) < 0 ⇔ m + 13 < 0 ⇔ m < -13
x – 2 = 3m + 4
⇔x = 3m + 6
Phương trình x – 2 = 3m + 4 có nghiệm lớn hơn 3 khi và chỉ khi: 3m + 6 > 3.
Giải: 3m + 6 > 3 có m > -1
Vậy với m > -1 thì phương trình ẩn x là x – 2 = 3m + 4 có nghiệm lớn hơn 3.
a) Để phương trình trên là phương trình bậc nhất thì: m≠\(\dfrac{3}{8}\)
c) Để phương trình vô nghiệm thì: m=0
d) Để phương trình vô số nghiệm thì m=\(\dfrac{3}{8}\)
a/ \(\left(2m-3\right)x+\left(x-3\right)4m+2mx=0\)
\(\Leftrightarrow\left(8m-3\right)x-12m=0\)
Để phương trình là hàm số bậc 1 :
\(8m-3\ne0\Leftrightarrow m\ne\dfrac{3}{8}\)
b/ Phương trình vô nghiệm :
\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m\ne0\end{matrix}\right.\)
c/ Phương trình vô số nghiệm khi :
\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m=0\end{matrix}\right.\)
Phương trình 3 - 2x = m - 5 có nghiệm nhỏ hơn -2 khi và chỉ khi:
Với m > 12 thì phương trình ẩn x là 3 – 2x = m – 5 có nghiệm nhỏ hơn -2
Ta có: 2x – 5 = m + 8
⇔ 2x = m + 8 + 5
⇔ 2x = m + 13
⇔ x = (m + 13)/2
Phương trình có nghiệm số âm khi (m + 13)/2 < 0 ⇔ m + 13 < 0 ⇔ m < -13
Ta có x – 3 = 2m + 4
⇔ x = 2m + 4 + 3
⇔ x = 2m + 7
Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > - 7/2