Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay (1) ; (2) vào (3) ta được 4( 1+ 2t) -3( 4+ mt) + 3m = 0
Hay ( 3m- 8) t= 3m- 8 (*)
Phương trình (*) có nghiệm tùy ý khi và chỉ khi 3m- 8= 0 hay m= 8/3.
Chọn B.
Đáp án A
Gọi M( 2+2t; 1+ mt) là điểm tùy ý thuộc ∆2
Để M nằm trên ∆1 khi và chi khi:
2( 2+ 2t) -3( 1+ mt) - m= 0 hay t( 4-3m) + 1- m= 0 n(*) luôn đúng với mọi t.
∆ 1 ≡ ∆ 2 ⇔ ( * ) thỏa với mọi t ⇔ 4 - 3 m = 0 1 - m = 0 (vô nghiệm)
Vậy không có m thỏa yêu cầu bài toán.
Lời giải:
Để hai đường thẳng trùng nhau thì trước tiên ta có: \(\frac{1}{m}=\frac{-m}{-1}=m(m\neq 0)\Leftrightarrow m=\pm 1\)
Nếu $m=1$ thì $(d_1): x-y=0$ và $(d_2): x-y=2$ không trùng nhau được
Nếu $m=-1$ thì $(d_1): x+y=0$ và $(d_2): x+y=0$ trùng nhau
Đáp án D.
Để 2 đường thẳng đã cho trùng nhau khi và chỉ khi
Tương đương m= 2.
Chọn C.
Xét ptr hoành độ của `(d)` và `(P)` có:
`(m-1)x^2+2mx+3m-1=2x+m`
`<=>(m-1)x^2+2(m-1)x+2m-1=0` `(1)`
`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>{(a \ne 0),(\Delta'=0):}`
`<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`
`<=>{(m \ne 1),(-m(m-1)=0):}`
`<=>m=0`
`->B`
Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)
\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)
Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)
\(\Rightarrow\) chọn \(B\)
Đáp án D
Để 2 đường thẳng đã cho trùng nhau khi và chỉ khi:
Hệ phương trình
có vô số nghiệm.
Thay (1) ; (2) vào (3) ta được : 4 (2+ 2t) -3 (1+ mt) + m= 0
Hay ( 3m- 8)t = m+5 (*)
Phương trình (*) có vô số nghiệm khi và chỉ khi