Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để hàm số trên là hàm bậc nhất : \(3m-2\ne0\Leftrightarrow m\ne\frac{2}{3}\)
b, Để hàm số trên là hàm bậc nhất : \(\sqrt{3-m}\ne0\Leftrightarrow3-m\ne0\Leftrightarrow m\ne3\)
c, Để hàm số trên là hàm bậc nhất : \(m+2\ne0;\frac{2m-1}{m+2}\ne0\Leftrightarrow m\ne-2;m\ne\frac{1}{2}\)
d, loại vì hàm bậc 2
a) (m^2+4)>0=> voi moi m
b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)
c) (m^2+2m+2=(m+1)^2+1>0 voi m=>f(x) luon dong bien=> dpcm
tong quat y=ax+b
DB khi a>0
NB khi a<0
hang so khi a=0
giai
a. với giá trị nào của m thì hàm số y= ( m2 +4)x +3 là hsđb :
=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m
b. với giá trị nào của m tì hàm số y= (m2 -2)x +31 là hsnb
a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)
c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R
ta ca
a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m
=> a>0 với mọi m=> y luôn đồng biến
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
Hàm là bậc nhất khi:
a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)
b. \(3-m>0\Rightarrow m< 3\)
c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)
b: ĐKXĐ: \(m< 3\)
c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)
d: ĐKXĐ: \(m=2\)