Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi giá trị của m và n thì một trong hai phương trình sau có nghiệm:
\(x^2+mx+n=0\)
\(x^2-2x-n=0\)
Gọi \(\Delta_1\)là biệt thức của pt \(x^2+mx+n=0\)
\(\Delta_2\)là biệt thức của pt \(x^2-2x-n=0\)
Ta có : \(\Delta_1+\Delta_2=\left(m^2-4n\right)+\left(4+4n\right)\)
\(=m^2+4>0\forall m\)
Nên tồn tại 1 trong 2 delta phải lớn hơn 0
=> 1 trong 2 pt đã cho có nghiệm với mọi m và n
Vậy .......
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
a) thay x = -3/2 vào pt được : \(\left(-\frac{3}{2}\right)^2-m.\left(-\frac{3}{2}\right)+m+1=0\Leftrightarrow m=-\frac{13}{10}\)
mà theo định lí Vi-et thì : x1+x2=m => x1=m-x2= -13/10+3/2=1/5 (giả sử x2 = -3/2)
b) tương tự
a) Thay x=-3 vào phương trình 2x2 – m2x +18m =0 ta được:
2(-3)2 - m2(-3) + 18m =0 ⇔ 3m2 +18m+18 =0
⇔ m2 + 6m +6 = 0
Δ' = 32 -1.6 = 9 -6 =3 > 0
√Δ' = √3
Phương trình có 2 nghiệm phân biệt:
Vậy với m=3 - 3 hoặc m=- 3- 3 thì phương trình đã cho có nghiệm x= -3
b) Thay x = -2 vào phương trình mx2 – x – 5m2 = 0 ta được:
m(-2)2 – (-2) – 5m2=0 ⇔ 5m2 – 4m -2 =0
Δ' = (-2)2 -5.(-2) = 4+10 = 14 > 0
√Δ' = √14
Phương trình có 2 nghiệm phân biệt: