Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2k^2+kx-10=0
Khi x=2 thì ta sẽ có: 2k^2+2k-10=0
=>k^2+k-5=0
=>\(k=\dfrac{-1\pm\sqrt{21}}{2}\)
b: Khi x=-2 thì ta sẽ có:
\(\left(-2k-5\right)\cdot4-\left(k-2\right)\cdot\left(-2\right)+2k=0\)
=>-8k-20+2k-4+2k=0
=>-4k-24=0
=>k=-6
c: Theo đề, ta có:
9k-3k-72=0
=>6k=72
=>k=12
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
Với $k=0$ ta có:$x=-2$.Suy ra $k=0$ thỏa.
Với $k \ne 0$:
$\Delta =(1-2k)^2-4k(k-2)=4k+1$
Để phương trình đã cho có nghiệm hữu tỉ thì $\Delta$ phải là một số chính phương.
Do $4k+1$ là số lẻ nên ta giả sử:
$4k+1=(2m+1)^2=4m^2+4m+1\Rightarrow k=m(m+1)$
Do $k \in Z$ và kết hợp 2 trường hợp trên ta suy ra:
$k$ là tích của hai số nguyên liên tiếp.
Với \(k\ne0\)
\(\Delta=\left(2k-1\right)^2-4k\left(k-2\right)=4k+1\ge0\Rightarrow k\ge-\frac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2k+1}{k}\\x_1x_2=\frac{k-2}{k}\end{matrix}\right.\)
\(x_1^2+x_2^2=2018\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)
\(\Leftrightarrow\frac{4k^2-4k+1}{k^2}-\frac{2k-4}{k}=2018\)
\(\Leftrightarrow4k^2-4k+1-2k^2+4k=2018k^2\)
\(\Leftrightarrow2016k^2=1\Rightarrow k=\pm\sqrt{\frac{1}{2016}}\)
Vì x = 5 là nghiệm của phương trình trên nên
Thay x = 5 vào phương trình trên ta được :
\(25+5k+15=0\Leftrightarrow40+5k=0\Leftrightarrow k=-8\)
Vậy k = -8 <=> x = 5
a/thay x=2 vào pt ta có:
\(2x^2+kx-10=0\Leftrightarrow2k-2=0\) \(\Leftrightarrow k=1\)
b/thay x=-2 vào pt ta có:
\(\left(k-5\right)x^2-\left(k-2\right)x+2k=0\) \(\Leftrightarrow4\left(k-5\right)-2\left(k-2\right)+4=0\)
\(\Leftrightarrow2\left(2k-10-k+2\right)+4=0\)\(\Leftrightarrow k-8=-2\Leftrightarrow k=6\)
c/thay x=-3 vào pt ta có:
\(kx^2-kx-72=0\Leftrightarrow9k+3k-72=0\)
\(\Leftrightarrow3\left(k+3\right)\left(3k-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-3\\k=\frac{8}{3}\end{matrix}\right.\)