Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+1}{7}=0\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Ta có: \(\frac{3x+3}{5}=0\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
Ta có: \(\frac{2x\left(x+1\right)}{3x+4}=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x \(\in\left\{-1;0\right\}\) thì \(\frac{2x\left(x+1\right)}{3x+4}=0\)
Ta có: \(\frac{2x\left(x-5\right)}{x-7}=0\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(x\in\left\{0;5\right\}\) thì \(\frac{2x\left(x-5\right)}{x-7}=0\)
a: Để 2x+1/5=2
thì 2x+1=10
=>2x=9
hay x=9/2
Để (2x+1)/5=-2
thì 2x+1=-10
=>2x=-11
hay x=-11/2
Để (2x+1)/5=0 thì 2x+1=0
hay x=-1/2
Để (2x+1)/5=4 thì 2x+1=20
=>2x=19
hay x=19/2
b: Để (x+1)/7=0 thì x+1=0
hay x=-1
Để (3x+3)/5=0 thì 3x+3=0
hay x=-1
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
\(\frac{2x\left(x+1\right)}{3x+4}=0\left(x\ne-\frac{4}{3}\right)\)\(\Leftrightarrow2x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\left(TM\right)\)
\(\frac{3x\left(x-5\right)}{x-7}=0\left(x\ne7\right)\)\(\Leftrightarrow3x\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\left(TM\right)\)
KL: ...............................
2x(x+1)3x+4=0(x≠−43)2x(x+1)3x+4=0(x≠−43)⇔2x(x+1)=0⇔[x=0x+1=0⇔[x=0x=−1(TM)⇔2x(x+1)=0⇔[x=0x+1=0⇔[x=0x=−1(TM)
3x(x−5)x−7=0(x≠7)3x(x−5)x−7=0(x≠7)⇔3x(x−5)=0⇔[x=0x−5=0⇔[x=0x=5(TM)