K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

a, vì (x-1)^2 >/ 0 với mọi x

(y-1)^2 >/ 0 với mọi y

=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y

=>(x-1)^2+(y-1)^2+3 >/ 3

Do đó Amax=3

 Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1

(y-1)^2 =0<=>y=1

23 tháng 2 2016

a) x=1,y=1

b) x=3,y=0

29 tháng 4 2017

\(A=\left|x-3\right|+y^2-10\)

\(A_{min}\Leftrightarrow\left|x-3\right|+y^2-10\)bé nhất

       \(\Leftrightarrow\left|x-3\right|+y^2\)bé nhất

        \(\Leftrightarrow\left|x-3\right|\)bé nhất và \(y^2\)bé nhất

 Vì: \(\left|x-3\right|\ge0\)

        \(y^2\ge0\)

\(\Rightarrow A_{min}\Leftrightarrow\hept{\begin{cases}x-3=0\Rightarrow x=3\\y^2=0\Rightarrow y=0\end{cases}}\)

Tìm giá trị thì thay số tìm được vào là ra

3 tháng 1 2018

Đặt A = |2014-x|+|2015-x|+|2016-x| = |x-2014|+|2015-x|+|2016-x|

Ta có: \(\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)

MÀ \(\left|2015-x\right|\ge0\)

\(\Rightarrow A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2014-x\right)\left(x-2016\right)\ge0\\\left|2015-x\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2014\le x\le2016\\x=2015\end{cases}\Rightarrow}x=2015}\)

Vậy GTNN của A = 2 khi x=2015

19 tháng 6 2019

khi x = 2015

16 tháng 4 2016

Khi x=3; và y=0 thì A đạt GTNN là -10

8 tháng 6 2016

vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại 

để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất 

vậy x=2014 

=> A= 0+1+2=3

8 tháng 6 2016

 | 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |

| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |

                                                = | 6045 - 3x |

đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất 

suy ra  6045 = 3x

           6045 : 3 =x 

                2015 = x

thay x vào A

 A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |

A = 1 + 0 + 1

A = 2 

vậy min A = 2 

khi x = 2015 

5 tháng 3 2018

A = (x - 2)2 + 3

Ta có \(\left(x-2\right)^2\ge0\) với mọi giá trị của x

=> \(\left(x-2\right)^2+3\ge3\)với mọi gt của x

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2=0\)

=> x - 2 = 0 => x = 2