Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
căn có nghĩa
\(\Leftrightarrow\frac{a}{3}\ge0\)
\(\Leftrightarrow a\ge0\)
b
căn có nghĩa
\(\Leftrightarrow-5a\ge0\)
\(\Leftrightarrow b\le0\left(-5\le0\right)\)
c
căn có nghĩa
\(\Leftrightarrow4-a\ge0\)
\(\Leftrightarrow-a\ge0-4\)
\(\Leftrightarrow-a\ge-4\)
\(\Leftrightarrow a\le4\)
d
căn có nghĩa
\(\Leftrightarrow3a+7\ge0\)
\(\Leftrightarrow a\ge-\frac{7}{3}\)
a) ĐKXĐ: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
b) ĐKXĐ: \(-5a\ge0\Leftrightarrow a\le0\)
c) ĐKXĐ: \(4-a\ge0\Leftrightarrow a\le4\)
d) ĐKXĐ: \(3a+7\ge0\Leftrightarrow a\ge-\dfrac{7}{3}\)
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)
d: ĐKXĐ: \(a\ge-\dfrac{7}{3}\)
a) √a.3.a.3=√9a^2
Đk: 9a^2》0
<=> a^2》0 ( luôn đúng)
=> biểu thức luôn có nghĩa
b)√-5a-5a=√-10a
Đk: -10a》0
<=> a《0
=> biểu thức có nghĩa khi a《0
c) √4-a.4-a=√4-5a
Đk: 4-5a》0
<=> -5a》-4
<=> a《4/5
=> biểu thức có nghĩa khi a《4/5
d)√3a+7
Đk: 3a+7》0
<=>3a》-7
<=>a》-7/3
Vậy...
a) \(\sqrt{\dfrac{a}{3}}\) có nghĩa khi: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
Vậy \(a\ge0\) thì \(\sqrt{\dfrac{a}{3}}\) xác định
b) \(\sqrt{-5a}\) có nghĩa khi \(-5a\ge0\Leftrightarrow a\le0\)
Vậy \(a\le0\) thì \(\sqrt{-5a}\) xác định
c) \(\sqrt{4-a}\) có nghĩa khi \(4-a\ge0\Leftrightarrow-a\ge-4\Leftrightarrow a\le4\)
Vậy \(a\le4\) thì \(\sqrt{4-a}\) xác định
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)
a) Căn thức có nghĩa `<=> a/3 >= 0<=> a>=0`
b) Căn thức có nghĩa `<=> -5a >= 0 <=> a<=0`
c) Căn thức có nghĩa `<=> 4-a >= 0 <=> a<=4`
d) Căn thức có nghĩa `<=> 3a+7>= 0<=> a>=-7/3`
a)
Điều kiện xác định của a 3 là
a 3 ≥ 0 ⇒ a ≥ 0
b) Điều kiện -5a ≥ 0 => a ≤ 0
c) Điều kiện 4 – a ≥ 0 => -a ≥ -4 = > a ≤ 4
d) Điều kiện 3a + 7 ≥ 0 => 3a ≥ -7
a ≥ - 7 3