Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\) \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\left(1\right)\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\left(2\right)\end{matrix}\right.\)
\(m=-6\) ko thỏa mãn
TH1: xét (1)
\(\Leftrightarrow\left\{{}\begin{matrix}m+6>0\\9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-6\\5m^2+6m-171>0\end{matrix}\right.\) \(\Rightarrow m>\frac{-3+12\sqrt{6}}{5}\)
TH2: xét (2)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\5m^2+30m-27>0\end{matrix}\right.\) \(\Rightarrow m< \frac{-15-6\sqrt{10}}{5}\)
Lấy hợp 2 nghiệm (xấu quá)
\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)
mình đánh nhầm, giúp vs ạ
a, \(f\left(x\right)=-x^2+mx+m+1\)
Để f(x) \(\le0\) \(\forall x\in R\) mà \(a=-1< 0\)
\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)
\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)
b, Để hàm số y xác định \(\forall x\in R\)
\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)
a/ Do \(a=-1< 0\)
\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)
\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)
\(\Rightarrow m=-2\)
b/ Để hàm số xác định với mọi x
\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)
- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn
- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)
Vậy \(0\le m< 2\)
Lời giải:
Đặt $x^2+4x+3=m$.
$m+1=x^2+4x+4=(x+2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow m\geq -1$
Ta có:
$(x^2+4x+3)(x^2+4x+6)=m(m+3)=(m+1)^2+m-1\geq m-1\geq -1-1=-2$
Vậy $(x^2+4x+3)(x^2+4x+6)\geq -2$ với mọi $x\in\mathbb{R}$
Để BPT đã cho đúng với mọi $x$ thì $a=-2$