\(\left(x^2+4x+3\right)\left(x^2+4x+6\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

Đặt $x^2+4x+3=m$.

$m+1=x^2+4x+4=(x+2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow m\geq -1$

Ta có:

$(x^2+4x+3)(x^2+4x+6)=m(m+3)=(m+1)^2+m-1\geq m-1\geq -1-1=-2$

Vậy $(x^2+4x+3)(x^2+4x+6)\geq -2$ với mọi $x\in\mathbb{R}$

Để BPT đã cho đúng với mọi $x$ thì $a=-2$

11 tháng 5 2021

Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)

\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)

\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)

Yêu cầu bài toán thỏa mãn khi:

\(m\le minf\left(t\right)=-2\)

11 tháng 5 2021

viết rõ dòng cuối cho em được ko ạ em ko hiểu lắm

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
13 tháng 4 2020

\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\) \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\left(1\right)\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\left(2\right)\end{matrix}\right.\)

\(m=-6\) ko thỏa mãn

TH1: xét (1)

\(\Leftrightarrow\left\{{}\begin{matrix}m+6>0\\9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-6\\5m^2+6m-171>0\end{matrix}\right.\) \(\Rightarrow m>\frac{-3+12\sqrt{6}}{5}\)

TH2: xét (2)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -6\\5m^2+30m-27>0\end{matrix}\right.\) \(\Rightarrow m< \frac{-15-6\sqrt{10}}{5}\)

Lấy hợp 2 nghiệm (xấu quá)

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ

1 tháng 4 2020

a, \(f\left(x\right)=-x^2+mx+m+1\)

Để f(x) \(\le0\) \(\forall x\in R\)\(a=-1< 0\)

\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)

\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)

b, Để hàm số y xác định \(\forall x\in R\)

\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)

NV
1 tháng 4 2020

a/ Do \(a=-1< 0\)

\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)

\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)

\(\Rightarrow m=-2\)

b/ Để hàm số xác định với mọi x

\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)

- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn

- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)

Vậy \(0\le m< 2\)