Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)
\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)
Đồng nhất 2 vế có
\(x^3=cx^3\Rightarrow c=1\)
\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)
\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)
\(b=d\Rightarrow b=1\)
2/ Câu B tương tự nha bạn
MK làm theo phương pháp hệ số bất định
a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1
Hệ số của thương là : x3:x2=x
Gọi đa thức thương là : x + c
\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)
Theo pp hệ số bất định
\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)
Vậy a = 2 ; b = 1
Câu b tương tự nhé
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
Đa thức f(x) là đa thức có bậc cao nhất là bậc 4 nên khi chia cho đa thức g(x) có bậc cao nhất là bậc 2 và không có dư thì được thương là đa thức bậc 2 . Suy ra
f(x) : g(x) = (x2 + cx + d)
<=> f(x) = g(x).(x^2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = (x2 - 3x + 4)(x2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = x4 + x3.(c - 3) + x2.(d - 3c + 4) + x(-3d + 4c) + 4d
Đồng nhất hai vế , ta sẽ tìm được a,b
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
Ta có :
\(f\left(x\right)=x^3+ax^2+2x+b\)
\(f\left(x\right)=x\left(x^2+x+1\right)+\left(a-1\right)\left(x^2+x+1\right)+\left(2-a\right)x+b-a+1\)\(f\left(x\right)=\left(x+a-1\right)\left(x^2+x+1\right)+\left(2-a\right)x+b-a+1\)
⇒ Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)thì
\(\left(2-a\right)x+b-a+1=0\)
⇒\(\left\{{}\begin{matrix}2-a=0\\b-a+1=0\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)