\(\sqrt{\text{{-3x}}\)b)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

\(a,\)Để \(\sqrt{-3x}\)có nghĩa \(\Leftrightarrow-3x\ge0\Rightarrow x\le0\)

\(b,\)Để \(\sqrt{4-2x}\)có nghĩa \(\Leftrightarrow4-2x\ge0\Rightarrow-2\left(x-2\right)\ge0\Rightarrow x-2\le0\Leftrightarrow x\le2\)

\(c,\)Để \(\sqrt{-3x+2}\)có nghĩa \(\Leftrightarrow-3x+2\ge0\Rightarrow-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)

\(d,\)Để \(\sqrt{3x+1}\)có nghĩa \(\Leftrightarrow3x+1\ge0\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

\(e,\)Để \(\sqrt{9x-2}\)có nghĩa \(\Leftrightarrow9x-2\ge0\Rightarrow9x\ge2\Rightarrow x\ge\frac{2}{9}\)

\(f,\)Để \(\sqrt{6x-1}\)có nghĩa \(\Leftrightarrow6x-1\ge0\Rightarrow6x\ge1\Rightarrow x\ge\frac{1}{6}\)

11 tháng 7 2019

a) \(x\le0\) 

\(b)2x\le4\Leftrightarrow x\le2\) 

\(c)-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)

..........

18 tháng 7 2019

\(a,x^2+1\ge0+1=1\Rightarrow\sqrt{x^2+1}\text{co nghia}\forall x\)

\(b,4x^2+3\ge4.0+3=3\Rightarrow\sqrt{4x^2+3}\text{co nghia}\forall x\)

\(c,9x^2-6x+1=\left(3x-1\right)^2\ge0\Rightarrow\sqrt{9x^2-6x+1}\text{co nghia }\forall x\)

\(\text{d,taco:}-\left(-x^2+2x-1\right)=\left(x-1\right)^2\ge0\Rightarrow-x^2+2x-1\le0\Rightarrow\sqrt{-x^2+2x-1}\text{co nghia }\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) \(e,-\left|x+5\right|\le0\forall x\Rightarrow\sqrt{-\left|x+5\right|}\text{co nghia}\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

\(f,-2x^2-1\le0-1=-1\Rightarrow\sqrt{-2x^2-1}\text{ khong co nghia}\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

d)

Ta thấy \(-x^2+2x-1=-(x^2-2x+1)=-(x-1)^2\leq 0, \forall x\in\mathbb{R}\)

Mà để biểu thức có nghĩa thì \(-x^2+2x-1=-(x-1)^2\geq 0\)

Do đó \(-(x-1)^2=0\Leftrightarrow x=1\)

Vậy biểu thức có nghĩa khi $x=1$

e)

\(|x+5|\geq 0, \forall x\in\mathbb{R}\Rightarrow -|x+5|\leq 0, \forall x\in\mathbb{R}\)

Mà để căn thức có nghĩa thì \(-|x+5|\geq 0\)

Do đó \(-|x+5|=0\Leftrightarrow x=-5\) thì căn thức có nghĩa

f)

\(x^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2x^2+1> 0, \forall x\in\mathbb{R}\)

\(\Rightarrow -2x^2-1=-(2x^2+1)< 0, \forall x\in\mathbb{R}\)

Căn thức có nghĩa khi \(-2x^2-1\ge 0 \) (điều này không thể do cmt)

\(\Rightarrow \) không tồn tại x để căn thức có nghĩa.

24 tháng 6 2019

a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)

Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)

Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.

b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)

Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)

c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)

Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0

\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)

\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)

\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)

24 tháng 6 2019

Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)

17 tháng 6 2018

a) Để : \(\sqrt{3x-2}\) xác định thì :

3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)

KL...........

b) Để : \(\sqrt{4-2x}\) xác định thì :

4 - 2x ≥ 0 ⇔ x ≤ 2

KL.......

c) Để : \(\sqrt{-4x}\) xác định thì :

-4x ≥ 0 ⇔ x ≤ 0

KL.......

d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :

x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)

KL.........

Còn lại tương tự bạn nhé.

3 tháng 9 2019

tìm x để căn thức sau có nghĩa

a) \(\sqrt{2x-1}\) có nghĩa khi 2x - 1 \(\ge\) 0 <=> 2x \(\ge\) 1 <=> x \(\ge\) \(\frac{1}{2}\)

Vậy: .......

b) \(\sqrt{4-x}\) có nghĩa khi 4 - x \(\ge\) 0

<=> -x \(\ge\) -4 <=> x \(\le\) 1

Vậy...............

c) \(\sqrt{\frac{3x+1}{2}}\) có nghĩa khi \(\frac{3x+1}{2}\ge0\)

<=> 3x + 1 \(\ge\) 0

<=> x \(\ge\) \(\frac{-1}{3}\)

Vậy.............

d) \(\sqrt{x^2+1}\) có nghĩa khi x2 + 1 \(\ge\) 0

Ta có: x2 \(\ge\) 0 và 1 > 0

=> x2 + 1 > 0 vs mọi x \(\in\) R

Vậy: \(\sqrt{x^2+1}\) có nghĩa vs mọi x \(\in\) R

e) \(\sqrt{x-2}+\frac{1}{x^2-4}\) có nghĩa khi

x - 2 \(\ge\) 0 và x2 - 4 \(\ne\) 0

<=> x \(\ge\) 2 và x \(\ne\) 2 ; -2

<=> x > 2

Vậy..............

f) \(\sqrt{2x-1}+\sqrt{3-x}\) có nghĩa khi 2x - 1\(\ge\) 0 và 3 - x \(\ge\) 0

<=> x \(\ge\) \(\frac{1}{2}\) và x \(\le\) 3

<=> \(\frac{1}{2}\le x\le3\)

Vậy..............

g) \(\sqrt{\frac{3}{x-1}}\) có nghĩa khi x - 1 > 0 <=> x > 1

Vậy...........

h) \(\sqrt{x^2-6x+9}\) có nghĩa khi x2 - 6x + 9 \(\ge\) 0

<=> (x - 3)2 \(\ge\) 0

Mà: (x - 3)2 \(\ge\) 0 vs mọi x \(\in\) R

Vậy..................

3 tháng 9 2019

cảm ơn nhé leuleu

a=, \(\sqrt{x^2-2.4x+16+2}\)\(\sqrt{\left(x-4\right)^2+2}\)\(\ge\)\(\forall\)x

vậy với mọi gtri của x thì căn luôn có nghĩa

b,= 2\(\sqrt{3x-2}\)

để biểu thức có nghĩa thì 3x - 2 \(\ge\)0

                                           x \(\ge\)2/3

c,để biểu thức có nghĩa thì   \(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)

\(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)\(\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{4}{3}\\x>2\end{cases}}\)\(\Rightarrow\)x>2    (1)

hoặc   \(\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-\frac{4}{3}\\x< 2\end{cases}}\)\(\Rightarrow\)\(\le\)-4/3      (2)

vậy với x > 2 hoặc x \(\le\)-4/3 thì căn có nghĩa

#mã mã#

27 tháng 5 2018

1)

a) \(6=\sqrt{36}< \sqrt{40}\)

b) \(3=\sqrt{9}< \sqrt{10}\)

c) \(2\sqrt{3}< 2\sqrt{4}=4\)

d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)

e) \(7=\sqrt{49}< \sqrt{50}\)

2)

a) \(x\ge0\)

b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)

c) \(5-a\ge0\Leftrightarrow a\le5\)

d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

e) \(-3< x< 1\)

f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)