K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

    \(\Rightarrow x+y\le2\)

Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)

              \(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)

\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)

Dấu "=" xảy ra ⇔ x = y = 1

30 tháng 6 2015

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)

 

4 tháng 4 2016

6)x- x3- 10x2+2x+4=0

<=>x- x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)

=>(x2-3x-2)(x2+2x-2)=0

Th1:x2-3x-2=0

denta(-3)2-(-4(1.2))=17

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)

Th2:x2+2x-2=0

denta:22-(-4(1.2))=12

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)

=>x=-căn bậc hai(3)-1,

x=3/2-căn bậc hai(17)/2,

x=căn bậc hai(3)-1,

x=căn bậc hai(17)/2+3/2

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

NV
6 tháng 4 2020

1. Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) \(\Rightarrow a+b=6\Rightarrow b=6-a\)

Thế vào \(a^2+b^2=26\)

\(\Rightarrow a^2+\left(6-a\right)^2=26\)

\(\Leftrightarrow2a^2-12a+10=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=5\\b=1\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(-1;5\right);\left(5;-1\right);\left(1;-5\right);\left(-5;1\right);\left(-1;-5\right);\left(-5;-1\right)\)

2. Ta có: \(\left(x+y\right)^2\ge4xy\) \(\forall x;y\)

\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow P=x^2y^2\le\frac{\left(x+y\right)^4}{16}=1\)

Dấu "=" xảy ra khi \(x=y=1\)