K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\) 

Có nghĩa khi:

\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)

____________________

\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)

Có nghĩa khi:

\(\dfrac{2x-3}{2x^2+1}\ge0\)

\(\Leftrightarrow2x-3\ge0\)

\(\Leftrightarrow x\ge\dfrac{3}{2}\)

a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0

=>3x-2>=0

=>x>=2/3

b: ĐKXĐ: (2x-3)/(2x^2+1)>=0

=>2x-3>=0

=>x>=3/2

24 tháng 6 2019

a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)

Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)

Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.

b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)

Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)

c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)

Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0

\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)

\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)

\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)

24 tháng 6 2019

Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)

b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)

d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)

e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)

f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)

a=, \(\sqrt{x^2-2.4x+16+2}\)\(\sqrt{\left(x-4\right)^2+2}\)\(\ge\)\(\forall\)x

vậy với mọi gtri của x thì căn luôn có nghĩa

b,= 2\(\sqrt{3x-2}\)

để biểu thức có nghĩa thì 3x - 2 \(\ge\)0

                                           x \(\ge\)2/3

c,để biểu thức có nghĩa thì   \(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)

\(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)\(\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{4}{3}\\x>2\end{cases}}\)\(\Rightarrow\)x>2    (1)

hoặc   \(\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-\frac{4}{3}\\x< 2\end{cases}}\)\(\Rightarrow\)\(\le\)-4/3      (2)

vậy với x > 2 hoặc x \(\le\)-4/3 thì căn có nghĩa

#mã mã#

6 tháng 12 2021

giúp mình vs

 

\(\Leftrightarrow3x-2\ge0\)

hay \(x\ge\dfrac{2}{3}\)

10 tháng 9 2019

b)\(\sqrt{\frac{3x-2}{x^2-2x+4}}\)xác định

<=> \(x^2-2x+4\)>0

<=>\(x^2-2x+1+3>0\)

<=> \(\left(x-1\right)^2+3>0\) (luôn đúng)

10 tháng 9 2019

c) Căn thức xác định <=> \(2x^2+1>0\) (luôn đúng)

27 tháng 11 2021

\(x>\dfrac{3}{2}\)

25 tháng 11 2018

Ta có \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}=\sqrt{\dfrac{2\sqrt{3}+2}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}-\dfrac{3\left(2\sqrt{3}-2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2\left(\sqrt{3}+1\right)}{12-4}-\dfrac{2\left(3\sqrt{3}-3\right)}{12-4}}=\sqrt{\dfrac{\sqrt{3}+1}{4}-\dfrac{3\sqrt{3}-3}{4}}=\sqrt{\dfrac{\sqrt{3}+1-3\sqrt{3}+3}{4}}=\sqrt{\dfrac{4-2\sqrt{3}}{4}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{4}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{2}=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\dfrac{\left|\sqrt{3}-1\right|}{2}=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow2x=\sqrt{3}-1\Leftrightarrow2x+1=\sqrt{3}\Leftrightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)

Ta lại có \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}=\dfrac{2x^{2017}\left[2\left(x+1\right)x-1\right]+\sqrt{3}}{2x^2+2x-1+x+1}=\dfrac{2x^{2017}\left[2x^2+2x-1\right]+\sqrt{3}}{x+1}=\dfrac{\sqrt{3}}{x+1}=\sqrt{3}:\left(x+1\right)=\sqrt{3}:\left(\dfrac{\sqrt{3}-1}{2}+1\right)=\sqrt{3}:\dfrac{\sqrt{3}+1}{2}=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\left(3-\sqrt{3}\right)}{2}=3-\sqrt{3}\)Vậy khi \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\) thì P=\(3-\sqrt{3}\)