\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

áp dụng bđt Cosi cho các số a, b, c không âm, ta có:

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\left(1\right)\\a+c\ge2\sqrt{ac}\left(2\right)\\b+c\ge2\sqrt{bc}\left(3\right)\end{matrix}\right.\)

lấy (1) + (2) + (3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)

 

30 tháng 7 2015

áp dụng bất đẳng thức cô- si, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(b+c\ge2\sqrt{bc}\)  \(\left(2\right)\)

\(c+a\ge2\sqrt{ca}\)  \(\left(3\right)\)

Cộng (1),(2),(3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu " = " xảy ra <=> \(a=b=c\)

27 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

25 tháng 4 2017

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

14 tháng 8 2020

Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(2)

Bất đẳng thức 2 luôn đúng với \(\forall x\),vậy nên bất đẳng thức 1 cũng luôn đúng với mọi x .

Dấu "=" xảy ra khi và chỉ khi \(\left(a-b\right)^2=0\)

=> a-b=0 => a=b

Vậy BDT \(\frac{a+b}{2}\ge\sqrt{ab}\) xảy ra khi a = b

áp dụng ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\left(1\right)\)

\(\frac{b+c}{2}\ge\sqrt{bc}\left(2\right)\)

\(\frac{a+c}{2}\ge\sqrt{ca}\) (3)

từ 1,2,3 cộng từng ba bất đẳng thức ta được : \(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{a+b+c}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Mở rộng kết quả cho 4 số a,b,c,d không âm ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng kết quả cho 5 số a,b,c,d,e không âm ta có bất đẳng thức :

\(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng \(\forall a,b\ge0\))

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\forall a,b\ge0\)

\(\frac{b+c}{2}\ge\sqrt{bc}\forall b,c\ge0\)

\(\frac{c+a}{2}\ge\sqrt{ac}\forall a,c\ge0\)

Do đó: \(\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)(đpcm)

i don not no

câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu

câu này ai giải đc cho tui 10000

Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si  với 2 số không âm , ta có 

\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)

\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)

Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)

\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)

Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)

P/s tham khảo nha

10 tháng 6 2018

\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)

BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)

b) Áp dụng BDT Cô-si có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)

1 tháng 7 2019

b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

18 tháng 7 2015

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

18 tháng 7 2015

cái câu hỏi 2 tớ ko bik đúng ko 

Ta có a và b không âm nên 

\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\)(bất đẳng thức cô - si)

Cần chứng minh \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\). Xét hiệu hai vế

\(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)\)

\(=\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\)

Xảy ra đẳng thức \(\Leftrightarrow a=b=\frac{1}{4}\)hoặc\(a=b=0\)

bạn áp dụng bất đẳng thức CÔ - SI là ra