\(a,b,c\ge0\) và \(a+b+c=1\) 

   Chứng minh rằng: <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

Ta có: \(\left(b-c\right)^2\ge0\Leftrightarrow b^2-2bc+c^2\ge0\)

\(\Leftrightarrow\left(b+c\right)^2\ge4bc\)

Áp dụng BĐT Cô - si cho 2 số không âm, ta được:

\(\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

hay \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)nên 

\(b+c\ge4a.4bc=16abc\left(đpcm\right)\)

15 tháng 9 2019

Cảm ơn bạn rất nhiều ;))

9 tháng 11 2017

Ta có: \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow1\ge4a\left(b+c\right)\)(*)

Lại có: \(\left(b+c\right)^2\ge4bc\)(**)

Nhân 2 vế (*) và(**), ta có:

 \(\left(b+c\right)^2\ge16abc\left(b+c\right)\)

Mà \(b;c\ge0\Rightarrow b+c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Vậy \(b+c\ge16abc\)

9 tháng 11 2017

ta co:b+c=(b+c)(a+(b+c))2 (vi a+b+c=1)

vi (a+(b+c))2>=4a(b+c)

=>b+c>=(b+c)2.4a

lai co (b+c)2>=4bc

=>b+c>=4bc.4a=16abc

3 tháng 9 2019

a,b,c\(\inℕ\) và a+b+c=1 ; a,b,c\(\ge\)0

Ta có 3 TH:

TH1: a=1,b=0,c=0                                                                             TH2:c=1,b=0,a=0

=> b+c=0+0=16.(1.0.0)=0                                                            => b+c=b+1>16.(0.0.1)=0

TH2: b=1,a=0,c=0

=> b+c=1+c> 16.(0.1.0)=0

28 tháng 3 2018

        \(\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

     \(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=c\)

Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân từng vế bđt trên =>đpcm

7 tháng 5 2019

\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)

\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)

\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)

\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)

\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)

\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)

1a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi x=y=1

b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi a=b=c=0

5 tháng 10 2019

\(\hept{\begin{cases}-1\le a\le2\\-1\le b\le2\\-1\le c\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+1\right)\left(a-2\right)\le0\\\left(b+1\right)\left(b-2\right)\le0\\\left(c+1\right)\left(c-2\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2\le a+2\\b^2\le b+2\\c^2\le c+2\end{cases}}\)

\(\Rightarrow\)\(6=a^2+b^2+c^2\le a+b+c+6\)\(\Leftrightarrow\)\(a+b+c\ge0\)

Dấu "=" xảy ra khi a=b=-1; c=2 và các hoán vị

15 tháng 10 2018

Ta có: để a2+b2+c2 bé hoặc bằng 5 thì a+b+c=3 và phải đạt giá trị lớn nhất

suy ra 1 số =2 1 số =1 1 số = 0

22+12+02=4+1+0=5

Vậy giá trị lớn nhất có thể đạt đc là 5 suy ra a2+b2+c2 bé hoặc bằng 5(đpcm)

15 tháng 10 2018

\(\left(a+b+c\right)^2=9\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=9\)

Có \(2\left(ab+bc+ac\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{a^2b^2c^2}\left(BĐTcosi\right)\)

Dấu "=" xảy ra khi a = b = c

\(a^2+b^2+c^2\le9-6\sqrt[3]{a^2b^2c^2}\le9-6=3\)

Vậy .......

28 tháng 1 2018

vì a,b,c>=0 =>a=1;b=0;c=0 hoặc a=0;b=1;c=0 hoặc a=0;b=0;c=1

=>a+2b+c>0 mà 1-1=0 => 4(1-a)(1-b)(1-c)=0

=>a+2b+c>=4(1-a)(1-b)(1-c)