Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) \(\left(1\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)
\(\Leftrightarrow\) \(\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)
\(\Leftrightarrow\) \(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\) với mọi \(a,\) \(b,\) \(c,\) \(d,\) \(e\in R\) \(\left(2\right)\)
Bất đẳng thức \(\left(2\right)\) đúng, mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(b=c=d=e=\frac{a}{2}\), tức \(a=2b=2c=2d=2e\)
Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Quá ez:))
Ta có: \(a^2+b^2+c^2+d^2+e^2\)
\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)
\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)
\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)
Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae
Nhân 4 vào từng vế
<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0
<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0
<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )
Vậy ...
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
<=>(a2-4ab+4b2)+(a2-4ac+4c2)+(a2-4ad+4d2)+(a2-4ae+e2)\(\ge\)0
<=>(a-2b)2+(a-2c)2+(a-2d)2+(a-2e)2\(\ge\)0 (luôn đúng)
=>dpcm
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
Áp dụng bđt AM-GM:
\(\frac{a^2}{4}+b^2\ge ab\)
\(\frac{a^2}{4}+c^2\ge ac\)
\(\frac{a^2}{4}+d^2\ge ad\)
\(\frac{a^2}{4}+e^2\ge ae\)
Cộng theo vế: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\("="\Leftrightarrow\frac{a}{2}=b=c=d=e\)
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\forall a,b,c,d,e\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)
\(\Leftrightarrow\) \(4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\) \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)\)...\(\ge0\)
\(\Leftrightarrow\) \(\left(a-2b\right)^2\)+\(\left(a-2c\right)^2\)...\(\ge\)0
nhớ tik nha
Xét hiệu:
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)
\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)
Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:
\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)
ô kê :))
a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae
Nhân 4 vào từng vế ta được
<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0
<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0
<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> b = c = d = e = a/2
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae-4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
BĐT trên đúng, mà các phép biến đổi là tương đương
\(\RightarrowĐPCM\)
Dấu "=" xảy ra khi a = 2b = 2c = 2d = 2e
Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.