Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân từng vế bđt trên =>đpcm
\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)
\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)
\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)
\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)
\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)
(a2+ab+ac)(a2+ab+ac+bc)+b2c2
đặt a2+ab+ac=x; bc=y
=>x(x+y)+y2=x2+xy+y2>=0(đúng)
Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :
\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)
Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:
Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)
\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)
Thôi,đi vào giải quyết bài toán.
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)
Khi đó BĐT tương đương với:
\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)
Ta cần chứng minh:
\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)
\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\)
Hình như cái BĐT cuối đúng thì phải ạ.
Dấu "=" xảy ra tại a=b=c=1
Dùng BĐT phụ:
\(\left(x+y\right)^2\ge4xy\)
Ta có:\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu “=” xảy ra khi a = b = c
Áp dụng BĐT Cauchy - Schwarz :
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Vì a,b,c không phải là số âm \(\Rightarrow a,b,c\ge0\)
Ta có 2 TH:
TH 1: a,b,c=0
Nếu a,b,c = 0 => a(a+b)(a+c)(a+b+c)=0
=> a(a+b)(a+c)(a+b+c)=0
TH 2: a,b,c >0
=> a(a+b) >0 => a(a+b)(a+c) >0
=> a(a+b)(a+c)(a+b+c) >0
Vậy a,b,c là các số không âm => a(a+b)(a+c)(a+b+c) \(\ge0\)
Đầu tiên , cần chứng minh \(x^2+xy+y^2\ge0\) với mọi x,y thuộc tập số thực.
Thật vậy , đặt \(A=x^2+y^2+xy\Rightarrow2A=\left(x+y\right)^2+x^2+y^2\Rightarrow A\ge0\)
Ta có : \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2=\left(a^2+ab+ac\right)\left(a^2+ab+ac+bc\right)+b^2c^2\)
Đặt \(x=a^2+ab+ac\) , \(y=bc\) , suy ra :
\(x\left(x+y\right)+y^2\ge0\Leftrightarrow x^2+xy+y^2\ge0\)luôn đúng.
Vậy bđt ban đầu dc chứng minh