\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

\(Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\) Áp dụng bđt AM - GM, ta lại có: \(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\) \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\) Cộng theo vế ta có:  \(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1} {a^2}\ge3\left(đ\text{pcm}\right)\) \(\text{Dau }"="\Leftrightarrow a=b=c=1\)

11 tháng 4 2018

Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\)

Áp dụng bđt AM - GM, ta lại có:

\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)

Cộng theo vế ta có: 

\(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1}{a^2}\ge3\left(đ\text{pcm}\right)\)

\(\text{Dau }"="\Leftrightarrow a=b=c=1\)

17 tháng 2 2020

https://olm.vn/hoi-dap/detail/239526218296.html

27 tháng 2 2020

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

3 tháng 9 2018

Do a,b,c dương nên AD BĐT Cauchy:

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{9}{3+ab+bc+ca}\)ca    (1)

a2+b2+c2\(\ge\)ab+bc+ca\(\Rightarrow3+a^2+b^2+c^2\ge3+ab+bc+ca\)

\(\Rightarrow\frac{9}{6}\le\frac{9}{3+ab+bc+ca}\left(a^2+b^2+c^2=3\right)\)  (2)

\(\left(1\right),\left(2\right)\Rightarrow P\ge\frac{3}{2}\)

\(\text{Dấu = khi a=b=c=1}\)

3 tháng 2 2020

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

4 tháng 2 2020

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

5 tháng 11 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\) ( đpcm)
Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

22 tháng 4 2017

Từ \(a+b+c+ab+bc+ca=6abc\)

\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Cho \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) thì ta có:

\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế 3 BĐT trên ta có: 

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế của (1) và (2) ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

16 tháng 8 2020

GT của bài toán được viết lại thành\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

áp dụng bđt Cauchy ta được

 \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

cộng các bất đẳng thức trên theo vế ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\cdot6=12\)

hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

đẳng thức được chứng minh, dấu "=" xảy ra khi a=b=c=1

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

11 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\frac{2}{\sqrt{3}}\left(1\right)\)

Từ giả thuyết suy ra \(0\le a,b,c\le2\)

\(\Rightarrow\hept{\begin{cases}ab\ge0\\bc\ge0\\ca\ge0\end{cases}\left(2\right)}\)

\(\Rightarrow\hept{\begin{cases}a^2\le2a\\b^2\le2b\\c^2\le2c\end{cases}\left(3\right)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra:

\(P\ge\frac{2}{\sqrt{3}}+\frac{1}{4}=\frac{8+\sqrt{3}}{4\sqrt{3}}\)

11 tháng 5 2019

tui đăng nhầm nhe đang làm nháp lở đăng