Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Chứng minh \(4^a+a+b\equiv0\left(mod2\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv a+b\equiv0\left(mod2\right)\)
\(\Rightarrow4^a+a+b\equiv0\left(mod2\right)\)
* Chứng minh \(4^a+a+b\equiv0\left(mod3\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv1+a+b\equiv0\left(mod3\right)\)
\(\Rightarrow a+b\equiv2\left(mod3\right)\)
\(\Rightarrow4^a+a+b\equiv1+a+b\equiv1+2\equiv0\left(mod3\right)\)
Vì 2, 3 nguyên tố cùng nhau nên \(4^a+a+b\equiv0\left(mod6\right)\)
Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)
Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)
Để \(A\inℕ\Rightarrow10^n-2020⋮6\)
Nhận thấy 10n = (4 + 6)n = 4 +B(6)
=> 10n chia 6 dư 4
mà 2020 chia 6 dư 4
=> 10n - 2020 \(⋮\)6
=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)
Từ (1) và (2) => A \(\inℕ\)
Do a + 1 và b + 2007 chia hết cho 6. Do đó : a, b lẻ. Thật vậy, nếu a, b chẵn
⇒a+1,b+2007 ⋮/ 2
⇒a+1,b+2007 ⋮/ 6.
Điều nói trên là trái với giả thiết.
Vậy a, b luôn lẻ.
Do đó : 4a+a+b ⋮ 2.
Ta có : a+1,b+2007 ⋮ 6.
⇒a+1+b+2007 ⋮ 6
⇒(a+b+1)+2007 ⋮ 3.
⇒a+b+1 ⋮ 3.
Ta thấy 4a+a+b=(4a−1)+(a+b+1)
Lại có : 4a−1 ⋮ (4−1)=3 (*)
suy ra : 4a+a+b ⋮ 3
mà \(\left(2,3\right)=1\RightarrowĐPCM\)
b+2007 chia hết cho 6 nên b+3 chia hết cho 6
4a+a+b=4a-4+a+1+b+3
mà 4a đồng dư với 4 (mod 6) nên 4a-4 chia hết cho 6
mặt khác a+1 và b+3 chia hết cho 6 nên 4a+a+b chia hết cho 6