K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

Do a + 1 và b + 2007 chia hết cho 6. Do đó : a, b lẻ. Thật vậy, nếu a, b chẵn 
⇒a+1,b+2007 ⋮/ 2
⇒a+1,b+2007 ⋮/ 6.
Điều nói trên là trái với giả thiết.
Vậy a, b luôn lẻ.
Do đó : 4a+a+b ⋮ 2.
Ta có : a+1,b+2007 ⋮ 6.
⇒a+1+b+2007 ⋮ 6
⇒(a+b+1)+2007 ⋮ 3.
⇒a+b+1 ⋮ 3.  
Ta thấy 4a+a+b=(4a−1)+(a+b+1)
Lại có : 4a−1 ⋮ (4−1)=3 (*)

suy ra : 4a+a+b ⋮ 3

mà \(\left(2,3\right)=1\RightarrowĐPCM\)

14 tháng 12 2015

b+2007 chia hết cho 6 nên b+3 chia hết cho 6

4a+a+b=4a-4+a+1+b+3

mà 4a đồng dư với 4 (mod 6) nên 4a-4 chia hết cho 6

mặt khác a+1 và b+3 chia hết cho 6 nên 4a+a+b chia hết cho 6

30 tháng 7 2018

* Chứng minh \(4^a+a+b\equiv0\left(mod2\right)\)

Ta có:

\(a+1+b+2007=a+b+2008\equiv a+b\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+a+b\equiv0\left(mod2\right)\)

* Chứng minh \(4^a+a+b\equiv0\left(mod3\right)\)

Ta có:

\(a+1+b+2007=a+b+2008\equiv1+a+b\equiv0\left(mod3\right)\)

\(\Rightarrow a+b\equiv2\left(mod3\right)\)

\(\Rightarrow4^a+a+b\equiv1+a+b\equiv1+2\equiv0\left(mod3\right)\)

Vì 2, 3 nguyên tố cùng nhau nên \(4^a+a+b\equiv0\left(mod6\right)\)

30 tháng 7 2018

bài này không đúng với \(a=5\) bn à

15 tháng 6 2021

Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)

Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)

Để \(A\inℕ\Rightarrow10^n-2020⋮6\)

Nhận thấy 10n = (4 + 6)n = 4 +B(6) 

=> 10n chia 6 dư 4

mà 2020 chia 6 dư 4

=> 10n - 2020 \(⋮\)

=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)

Từ (1) và (2) => A \(\inℕ\)

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0