Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : \(P=a^4+b^4+2-2-ab\)
Áp dụng BĐT cô si, ta có :
\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1
\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)
Mặt khác \(a^2+b^2\ge2ab\)
Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
\(\Rightarrow ab\le1\)(2)
Từ (1) và (2)
Ta có : \(P\ge4-3ab\ge4-3=1\)
Vậy P đạt GTNN là 1 khi a = b = 1
#~Will~be~Pens~#
Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4
=>0=<a+b=<1
Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013
=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015
=>Amin=2015 khi a=b=1/2
\(a^2+b^2=2\)
\(\Leftrightarrow\left(a+b\right)^2-2ab=2\)
\(\Leftrightarrow2ab=\left(a+b\right)^2-2\)
Theo đề ra: \(P=3\left(a+b\right)+ab\)
\(\Leftrightarrow2P=6\left(a+b\right)+2ab\)
\(=6\left(a+b\right)+\left(a+b\right)^2-2\)
\(=\left(a+b\right)^2+2.3\left(a+b\right)+9-9-2\)
\(=[\left(a+b\right)+3]^2-11\)
\(\Leftrightarrow P=\frac{1}{1}\left(a+b+3\right)^2-\frac{11}{2}\)
Ta có: \(\left(a+b+3\right)^2\ge0\forall a,b\inℝ\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+3\right)^2-\frac{11}{2}\ge\frac{-11}{2}\forall a,b\inℝ\)
\(\Leftrightarrow MinP=\frac{-11}{2}\)
Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))
Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:
\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)
Đẳng thức xảy ra khi \(x=y=\pm2\)
*)Nếu \(xy\ge0\Rightarrow A\ge4\)
*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\). \(y\rightarrow-z\left(z>0\right)\)
Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)
\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)
\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)
ta có:
P=\(a^4+b^4+4ab=\left(a^2+b^2\right)^2-2a^2b^2+4ab=16+ab\left(4-2ab\right)=16+ab\left(a^2+b^2-2ab\right)=16+ab\left(a-b\right)^2\ge16\)xảy ra khi a=b=\(\sqrt{2}\)
a,b cũng có thể trái dấu mà bạn?Khi đó thì \((a-b)^2\) sẽ <0 r