K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Dùng Bất đẳng thức Cô sy cho mẫu số

16 tháng 4 2020

ta có 

\(a^4b^2\ge2\sqrt{a^4b^2}=2a^2b\)\(=>\frac{a}{a^4+b^2}\le\frac{a}{2a^2b}=\frac{1}{2ab}\)

tương tự ta có

\(\frac{b}{b^4+a^2}\le\frac{1}{2ab}\)

\(=>\frac{a}{a^4+b^2}+\frac{b}{b^4+a^2}\le\frac{1}{2ab}+\frac{1}{2ab}=\frac{1}{ab}\)

dấu = xảy ra khi \(\hept{\begin{cases}a^4=b^2\\a^2=b^4\end{cases}=>a^2=b^2=1}\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

22 tháng 6 2021

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)

28 tháng 3 2017

cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

18 tháng 5 2019

\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{3^2}{3}=3\)

Khi đó \(c^2+3\ge c^2+ab+bc+ca=\left(b+c\right)\left(a+c\right)\Leftrightarrow\sqrt{c^2+3}\ge\sqrt{b+c}\sqrt{a+c}\)

     \(a^2+3\ge a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\Leftrightarrow\sqrt{a^2+c}\ge\sqrt{\left(a+b\right)}\sqrt{a+c}\)

\(b^2+3\ge b^2+ab+bc+ca=\left(a+b\right)\left(b+c\right)\Leftrightarrow\sqrt{b^2+3}\ge\sqrt{a+b}\sqrt{b+c}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{ab}{\sqrt{b+c}\sqrt{a+c}}+\frac{bc}{\sqrt{a+b}\sqrt{a+c}}+\frac{ca}{\sqrt{a+b}\sqrt{b+c}}\)*

áp dụng bđt Cauchy ngược dấu 

\(\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{a+c}}\le\frac{\frac{1}{a+b}+\frac{1}{a+c}}{2}\Leftrightarrow\frac{2}{\sqrt{a+b}\sqrt{a+c}}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\Leftrightarrow\frac{2bc}{\sqrt{a+b}\sqrt{a+c}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

Chứng minh tương tự \(\frac{2ab}{\sqrt{a+c}\sqrt{b+c}}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

                                   \(\frac{2ca}{\sqrt{b+c}\sqrt{a+b}}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Kết hợp với * ta có 

\(\frac{2ab}{\sqrt{c^2+3}}+\frac{2bc}{\sqrt{a^2+3}}+\frac{2ca}{\sqrt{b^2+3}}\le\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\)

\(\Leftrightarrow2\left(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\right)=\frac{bc+ca}{a+b}+\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}=a+b+c\)

\(\Leftrightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}=\frac{3}{2}.\)

18 tháng 5 2019

nhầm xíu dòng thứ 2 từ dưới lên 

\(2\left(...\right)\ge\frac{ab}{..}...\)=...