Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết kết hợp sử dụng BĐT AM - GM có:
\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)
\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)
Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)
Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:
\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)
\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)
Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)
(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)
=[(căn (a+b)(1/a+1/b))-1]^2
=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)
=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)
=>a/b+b/a>=7
(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2
=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304
=>ĐPCM
\(\Leftrightarrow a\left(a+2\right)\left(c+2\right)+b\left(a+2\right)\left(c+2\right)+c\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+ab^2+bc^2+ca^2\le8+abc\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le2+abc\)
Không mất tính tổng quát, giả sử \(b=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow ab+bc\ge b^2+ac\)
\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\)
\(\Rightarrow ab^2+bc^2+ca^2\le bc^2+a^2b+abc=b\left(a^2+c^2\right)+abc=b\left(2-b^2\right)+abc\)
\(=2+abc-\left(b-1\right)^2\left(b+2\right)\le2+abc\) (đpcm)
Lời giải:
Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)
\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)
Chia 2 vế cho \(12^t\) ta có:
\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)
\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)
Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):
\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)
\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )
Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b
Lời giải:
Ta có \(\left\{\begin{matrix} \log_ab=\frac{b}{4}\\ \log_2a=\frac{16}{b}\end{matrix}\right.\Rightarrow 4=\log_2a.\log_ab=\log_2b\)
\(\Rightarrow b=16\).
\(\log_2a=\frac{16}{b}=1\Rightarrow a=2\)
Do đó \(a+b=18\). Đáp án D.
em chưa có học