\(\dfrac{a-\sqrt{a}}{1-\sqrt{ }a}\) là

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Với a > 1, ta có

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a\left(\sqrt{a-1}\right)}}{1-\sqrt{a}}\dfrac{-\sqrt{a\left(1-\sqrt{a}\right)}}{1-\sqrt{a}}=\sqrt{a}\)

 

26 tháng 11 2021

banjcho mình hỏi bài này là làm theo cách nào thê, mong bạn chỉ mình, mình cảm mơn

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

27 tháng 10 2020

\(\frac{\sqrt{a^3}}{\sqrt{a}}\left(a>0\right)\)

\(=\sqrt{\frac{a^3}{a}}\)

\(=\sqrt{a^2}\)

\(=a\) (vì a>0)

27 tháng 10 2020

\(\frac{\sqrt{a^3}}{\sqrt{a}}=\frac{\sqrt{a^2\cdot a}}{\sqrt{a}}=\frac{\left|a\right|\sqrt{a}}{\sqrt{a}}=\left|a\right|=a\)( vì a > 0 )

22 tháng 4 2017

a)

Q=aa2b2(1+aa2b2):baa2b2=aa2b2a2(a2b2)ba2b2=aa2b2a2a2+b2ba2b2=aba2

18 tháng 3 2021

P/s gọi a = x cho dễ viết nhé 

a, Với \(x\ge0;x\ne1;x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

chỗ này mình nghĩ ko phải trục căn thức đâu ha :D 

b, Ta có P > 1/6 hay \(\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Leftrightarrow\frac{\sqrt[]{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{6\sqrt{x}-12-3\sqrt{x}}{18\sqrt{x}}>0\Leftrightarrow\frac{3\sqrt{x}-12}{18\sqrt{x}}>0\)

\(\Leftrightarrow3\sqrt{x}-12>0\)( vì \(18\sqrt{x}>0\))

\(\Leftrightarrow3\sqrt{x}>12\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

Vậy \(x>16\)

cho mình hỏi đề có sai ko ? \(P< \frac{1}{6}\)mình nghĩ sẽ hợp lí hơn 

18 tháng 3 2021

んuリ イ hãy thuận theo ý thầy :)) và nhớ chú ý đến ĐKXĐ

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

Để P > 1/6 thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)

<=> \(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)

<=> \(\frac{2\sqrt{a}-4}{6\sqrt{a}}-\frac{\sqrt{a}}{6\sqrt{a}}>0\)

<=> \(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)

Dễ thấy \(6\sqrt{a}>0\forall x>0\)

=> \(\sqrt{a}-4>0\)<=> \(\sqrt{a}>4\)<=> \(a>16\)

Vậy với a > 16 thì P > 1/6

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

13 tháng 7 2019

a) ĐKXĐ : \(a>0;a\ne1\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)

\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)

b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)

\(\Rightarrow0< a< \frac{4}{25}\)

10 tháng 5 2019

ccccccccccccccccccccccccccccccccccccccccccccccccccccc

10 tháng 5 2019

AAi giải với ạ huhuu