K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

Từ đẳng thức đã cho suy ra a 3   +   b 3   +   c 3 – 3abc = 0

b 3   +   c 3 = (b + c)( b 2   +   c 2 – bc)

= (b + c)[ ( b   +   c ) 2 – 3bc]

= ( b   +   c ) 3 – 3bc(b + c)

=> a 3   +   b 3   +   c 3 – 3abc = a 3   +   ( b 3   +   c 3 ) – 3abc

ó a 3   +   b 3   +   c 3 – 3abc = a 3   +   ( b   +   c ) 3 – 3bc(b + c) – 3abc

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 ) – [3bc(b + c) + 3abc]

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 ) – 3bc(a + b + c)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 – 3bc)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2 – ab  - ac + b 2 + 2bc + c 2   – 3bc)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   +   b 2   +   c 2 – ab – ac – bc)

Do đó nếu a 3   +   ( b 3   +   c 3 ) – 3abc = 0 thì a + b + c  = 0 hoặc a 2   +   b 2   +   c 2 – ab – ac – bc = 0

Mà a 2   +   b 2   +   c 2 – ab – ac – bc = .[ ( a   –   b ) 2   +   ( a   –   c ) 2   +   ( b   –   c ) 2 ]

Nếu ( a   –   b ) 2   +   ( a   –   c ) 2   +   ( b   –   c ) 2 = 0 ó  suy ra a = b = c

Vậy a 3   +   ( b 3   +   c 3 ) = 3abc thì a = b = c hoặc a + b + c = 0

Đáp án cần chọn là: C

17 tháng 5 2019

Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)

Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

17 tháng 5 2019

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

15 tháng 1 2021

a3 + b3 + c3 = 3abc

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

+) a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c

⇒ a + b + c = 0 hoặc a = b = c ( đpcm )

5 tháng 7 2016

Nếu :  a + b + c = 0 
=> a + b = -c 
=> (a + b)3 = -c3 
=>a3+b3+c3 =-3ab(a + b)=3abc

5 tháng 7 2016

Chỉ biết vậy thôi!!!!

22 tháng 6 2017

Ta có :

a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức phụ : a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Vô link này sẽ có thêm vài hệ thức của hằng nữa : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt

=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)

Từ (2) ta có :

a2 + b2 + c2 - ab - bc - ca = 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ab + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

11 tháng 6 2019

•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?

a) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

b) \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3.(1) 
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b) 
thay vào (2) ta dc 
=3abc 
ta kết luận :vế trái= vế phải 

chúc bn hc tốt

14 tháng 2 2018

A B E F C D O I