Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
detal=\(b^2-4ac\)
để phương trình có no khi và chỉ khi detal\(:\Delta\ge0\)
ta cos5a-b+2c=0
=>b=5a+2c=>\(b^2=4c^2+20ac+25a^2\)
=>\(\Delta=4c^2+16ac+25a^2=\left(2c-4a\right)^2+9a^2\ge0\)=>điều phải chứng minh
Chứng minh bằng biến đổi tương đương :
\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) . Vì hai vế không âm nên bình phương cả hai vế :
\(\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\) \(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu dc chứng minh.
Dấu "=" xảy ra khi a = b (a,b không âm)
Bài 1:
a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)
b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)
c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)
Lời giải:
Ta có: \(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}\)
Khi đó:
\(\frac{(a-b)^2}{8(A-B)}=\frac{(a-b)^2}{4(\sqrt{a}-\sqrt{b})^2}=\frac{(\sqrt{a}+\sqrt{b})^2}{4}\)
Ta cần cm: \(B< \frac{(\sqrt{a}+\sqrt{b})^2}{4}< A\)
Thật vậy:
\(B-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{4\sqrt{ab}-(\sqrt{a}+\sqrt{b})^2}{4}=\frac{-(\sqrt{a}-\sqrt{b})^2}{4}< 0, \forall a\neq b\)
\(\Rightarrow B< \frac{(\sqrt{a}+\sqrt{b})^2}{4}\)
\(A-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b}{2}-\frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b-2\sqrt{ab}}{4}=\frac{(\sqrt{a}-\sqrt{b})^2}{4}>0,\forall a\neq b\)
\(\Rightarrow A> \frac{(\sqrt{a}+\sqrt{b})^2}{4}\)
Ta có đpcm.
a) Ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}\right)^2+2\sqrt{a}.\sqrt{b}+\left(\sqrt{b}\right)^2=a+2\sqrt{a}.\sqrt{b}+b\)
\(\left(\sqrt{a+b}\right)^2=a+b\)
Vì \(a+2\sqrt{a}.\sqrt{b}+b>a+b\) nên \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\). \(\Rightarrow\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
a.\(\Rightarrow a^2+3>2\sqrt{a^2+2}\)
\(\Leftrightarrow a^4+9+6a^2>4a^2+8\)
\(\Leftrightarrow\left(a^2+1\right)^2>0\left(LĐ\right)\)
b.Áp dụng BĐT Svarxo:
\(VP\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}=VT\)
√(a2 b) = √(a2 ).√b = |a| √b = a√b (do a ≥ 0;b ≥ 0)