K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

ta có : áp dụng đẳng thức bunhiacopxki

ta có : \(\left(a+b\right).\left(1+1\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Rightarrow a+b\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) ( đpcm)

2 tháng 11 2015

a/ \(\Rightarrow\int^{4x-2y=2}_{-3x+2y=2}\)

Cộng 2 vế ta đc : x = 4

Thay x = 4 vào 2x - y = 1 ta đc:

8 - y = 1

=> y = 7

Vậy x = 4 ; y = 7

b/ \(\Rightarrow\int^{3x+4y=12}_{10x+4y=10}\)

Trừ 2 vế ta đc : 7x = -2 => x = -2/7

Thay x = -2/7 vào 3x + 4y = 12 ta đc :

-6/7 + 4y = 12 

=> 4y = 90/7

=> y = 45/14

Vậy x = -2/7 ; y = 45/14

2 tháng 11 2015

Smile ơi

có cần nah l i k e kko?

Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d>0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
20 tháng 6 2019

\(N=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

\(\ge\frac{27}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{2}=6^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b =c = 1

20 tháng 6 2019

Ta có đánh giá \(\frac{3+a^2}{3-a}\ge2a\) \(\forall a:0< a< 3\)

Thật vật, biến đổi tương đương: \(\Leftrightarrow3+a^2\ge2a\left(3-a\right)\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)

Tương tự: \(\frac{3+b^2}{3-b}\ge2b\) ; \(\frac{3+c^2}{3-c}\ge2c\)

Cộng vế với vế: \(N\ge2\left(a+b+c\right)=6\)

\("="\Leftrightarrow a=b=c=1\)

3 tháng 6 2019

Có \(a^2+b^2=3-ab\)

Mà \(a^2+b^2\ge2ab\) 

\(\Leftrightarrow3\ge3ab\)

\(\Leftrightarrow1\ge ab\left(1\right)\)

Cũng có:\(a^2+b^2\ge-2ab\)

\(\Leftrightarrow3-ab\ge-2ab\)

\(\Leftrightarrow-3\le ab\left(2\right)\)

Từ (1) và (2) \(1\ge ab\ge-3\)

Lại có :

\(\left(a^2+b^2\right)^2=\left(3-ab\right)^2\)

\(\Leftrightarrow a^4+b^4=9-6ab+a^2b^2-2a^2b^2=9-6ab-a^2b^2\)

\(\Rightarrow P=a^4+b^4-ab=9-7ab-a^2b^2=-\left(a^2b^2+7ab-9\right)\)

\(\Leftrightarrow P=-\left(a^2b^2-7ab+8ab\right)\)

\(\Leftrightarrow P=\left(ab+3\right)\left(-ab-4\right)+21\)

Có \(ab\ge-3\Rightarrow ab+3\ge0\)

\(-ab-4< 0\)

\(\Rightarrow P\le21\)

Max P = 21<=> ab=-3;a=-b<=>\(b=\pm\sqrt{3};a=\pm\sqrt{3}\)tương ứng

3 tháng 6 2019

thằng CTV kia chắc cop nguyên lời giải vào quá =))