Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`
Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`
Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`
1 ) \(A=\left(\dfrac{2x^3+2}{x+1}-2x\right)\left(\dfrac{x^3-1}{x-1}+x\right)\)
\(\Leftrightarrow A=\left(\dfrac{2x^3+2-2x^2-2x}{x+1}\right)\left(x^2+2x+1\right)\)
\(\Leftrightarrow A=\left(\dfrac{\left(2x^2-2\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=\left(\dfrac{2\left(x-1\right)\left(x+1\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=2\left(x-1\right)^2\left(x+1\right)^2\ge0\forall x\)
\(a=\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)\)
\(a=\left[\left(x+1\right)\left(x+9\right)\right]\left[\left(x+2\right)\left(x+8\right)\right]\)
\(a=\left[x\left(x+9\right)+1\left(x+9\right)\right]\left[x\left(x+8\right)+2\left(x+8\right)\right]\)
\(a=\left(x^2+9x+x+9\right)\left(x^2+8x+2x+16\right)\)
\(a=\left(x^2+10x+9\right)\left(x^2+10x+16\right)\)
\(a=\left(x^2+10x+12,5-3,5\right)\left(x^2+10x+12,5+3,5\right)\)
\(a=\left(x^2+10x+12,5\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\)