K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Ta có:

\(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Rightarrow M\le\sqrt{2}-1\)

15 tháng 11 2017

Ta có :

   \(2M=\frac{2ab}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}\)

\(\Leftrightarrow a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Leftrightarrow M\le\sqrt{2}-1\)

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

NV
22 tháng 12 2020

\(1-c=a+b\ge2\sqrt{ab}\Rightarrow4ab\le\left(1-c\right)^2\)

\(2bc+ca\le2bc+2ca=2c\left(a+b\right)=2c\left(1-c\right)\)

Từ đó ta có:

\(P\le\left(1-c\right)^2+2c\left(1-c\right)=1-c^2\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)

Em cảm ơn ạ

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

NV
18 tháng 8 2021

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

18 tháng 8 2021

con cảm ơn thầy ah.

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?

 

NV
22 tháng 2 2021

\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)

\(\Rightarrow a^2+b^2\le8\)

\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)

29 tháng 6 2021

12632t54s jsd