Với 10 thỏa mãn (x-2)(x+2)=1, giá trị của biểu thức x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-2\right).\left(x+2\right)=1\)

\(\Leftrightarrow x^2-4=1\)

\(\Leftrightarrow x^2=5\)

\(\Leftrightarrow x=\pm\sqrt{5}\)

mình giải đến đây thôi,phần đằng sau mk ko hiểu đề bạn viết sai sai ở đâu ý

29 tháng 7 2020

3, Áp dụng BĐT Cauchy Schwarz dạng cộng mẫu thức ta có :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Vậy ta có điều phải chứng minh

29 tháng 7 2020

2 b 

\(bđt< =>a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(< =>2abcd\le a^2d^2+b^2c^2\)

\(< =>a^2b^2+b^2c^2-2abcd\ge0\)

\(< =>\left(ab-cd\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{c}{d}\)

Vậy ta đã hoàn tất chứng minh 

14 tháng 10 2018

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)

\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)

\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)

\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)

\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

6 tháng 7 2020

a

Dễ thấy theo AM - GM ta có:

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)

Đẳng thức xảy ra tại \(x=2y\)

b

\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)

\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)

Đẳng thức xảy ra tại x=0

5 tháng 4 2020

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)

10 tháng 4 2020

a)ĐKXĐ : x > 0 

P = \(\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{1}{\sqrt{x}}.\left(\sqrt{x}-1+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\sqrt{x}-1}{\sqrt{x}}.\left(1-\frac{1}{\sqrt{x}+1}\right)\)

     = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right).\sqrt{x}}{\sqrt{x}}\)

       = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy P = \(\frac{\sqrt{x}+1}{\sqrt{x}}\)

b) x = \(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

=> P = \(\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1}=\frac{\sqrt{3}}{\sqrt{3}-1}\)

        = \(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3+1}\right)}=\frac{3+\sqrt{3}}{3-1}=\frac{3+\sqrt{3}}{2}\)

c)\(P\sqrt{x}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}=5\sqrt{x-4}\)

Đặt \(\hept{\begin{cases}a=\sqrt{x}\\b=\sqrt{x-4}\end{cases}\Rightarrow a^2+b^2=x-\left(x-4\right)=4}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=4\\b=5a-4\end{cases}\Rightarrow\hept{\begin{cases}a^2-\left(5a-4\right)^2=4\left(^∗\right)\\b=5a-4\end{cases}}}\)

Từ (*) <=> a2 -(25a2 -40a + 16 ) =4

        <=>  -24a2 + 40a - 20        = 0

=> \(\Delta'=-80< 0\)

=> PT vô nghiệm 

=> ko tồn tại x thỏa mãn

20 tháng 4 2020

bn lm sai đề bài r