K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEF và ΔADC có 

\(\dfrac{AE}{AD}=\dfrac{AF}{AC}\left(\dfrac{3}{4}=\dfrac{6}{8}\right)\)

\(\widehat{A}\) chung

Do đó: ΔAEF∼ΔADC(c-g-c)

b) Ta có: ΔAEF∼ΔADC(cmt)

nên \(\widehat{AEF}=\widehat{ADC}\)(hai góc tương ứng) và \(\widehat{AFE}=\widehat{ACD}\)(hai góc tương ứng)

Xét ΔIDF và ΔIEC có 

\(\widehat{ICE}=\widehat{IFD}\)(cmt)

\(\widehat{DIF}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔIDF∼ΔIEC(g-g)

Suy ra: \(k=\dfrac{DF}{EC}=\dfrac{AF-AD}{AC-AE}=\dfrac{6-4}{8-3}=\dfrac{2}{5}\)

22 tháng 5 2015

Bạn tự vẽ hình 

a)*ta có M là trung điểm của AB

             N là trung điểm của BC

Suy ra: MN là đường trung bình của tam giác ABC

   *ta có N là trung điểm của BC

            P là trung điểm của DC

Suy ra : NP là đường trung bình của tam giác BCD

b)ta có Q là trung điểm của AD

            P là trung điểm của DC

Suy ra PQ là đường trung bình của tam giác ADC

=>PQ song song với AC;PQ=\(\frac{AC}{2}\)

mà MN song song với AC;MN=\(\frac{AC}{2}\)(MN là đường trung bình của tam giác ABC)

nên: PQ song song MN;PQ=MN

Suy ra MNPQ là hình binh hành(1)

ta lại có : AD=BC(ABCD là hình thang cân) 

=>AQ=BN=QD=NC(Q,N lần lượt là trung điểm của AD,BC)

Xét tam giác MNB và tam giác MQA

BN=AQ (chứng minh trên)

MB=MA(M là trung điểm của AB)

góc MAQ=góc MBN

Suy ra tam giác MNB=tam giác MQA(c-g-c)

=>MQ=MN( 2 cạnh tương ứng )(2)

Từ (1) và (2) suy ra :

MNPQ là hình thoi

=> MP vuông góc NQ