Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1;3;9;27;81;243;729
b) Số hạng thứ 20 của dãy là: \(3^{19}\)
`A)1/(1.2)+1/(2.3)+....+1/(100.101)`
`=1-1/2+1/2-1/3+...+1/100-1/101`
`=1-1/101=100/101`
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
trl:
a, số thứ nhất: 3+=3+15x0
số thứ 2: 18=3+15x0+15x1
số thứ 3: 48= 3+15x0x1+15x2
*còn nữa*
Số hạng thứ nhất : 3=3+15×0 Số hạng thứ hai : 18=3+15×1 Số hạng thứ ba : 48=3+15×1+15×2 Số hạng thứ tư : 93=3+15×1+15×2+15×3 Số hạng thứ năm : 153=3+15×1+15×2+15×3+15×4 Số hạng thứ n : 3+15×1+15×2+15×3+......+15×(n-1) Vậy số hạng thứ 100 của dãy là : 3+15×1+15×2+......+15×(100-1) =3+15×(1+2+3+......+99) =3+15×(1+99)×99÷2=74253 b) Vậy 11703 là số hạng thứ 40 của dãy
a, ba số hạng là:154;208;270
b, ba số hạng là:66;91;120
Cảm ơn bạn nha!