Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì n-5 thuộc Ư(7)
=>n-5 thuộc {1;-1;7;-7}
=>n thuộc {4;6;12;-2}
Vậy: B={4;6;12;-2}
Để phân số trên nhận giá trị nguyên
=> n3-2n2+3 chia hết cho n-2
=> n2(n-2)+3 chia hết cho n-2
Vì n2(n-2) chia hết cho n-2
=> 3 chia hết cho n-2
=> n-2 thuộc Ư(3)
n-2 | n |
1 | 3 |
-1 | 1 |
3 | 5 |
-3 | -1 |
KL: n thuộc .........................
Câu 2: Trong hình vẽ sau trên nửa mặt phẳng bờ là đường thẳng chứa điểm E có bao nhiêu tia gốc B là các tia trùng nhau? ạ
Gọi biểu thức trên là A
Ta có
\(A=\frac{n^3-2n^2+3}{n-2}\)
\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)
Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)
Vậy ta có:
\(n-2=-3\\ \Rightarrow n=-1\)
\(n-2=-1\\ \Rightarrow n=1\)
\(n-2=1\\ \Rightarrow n=3\)
\(n-2=3\\ \Rightarrow n=5\)
mk hôm qua ms hỏi bài này, h lm theo trí nhớ nè...
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
Mà \(2+\frac{5}{\sqrt{x}-1}\) là nguyên \(\Rightarrow\frac{5}{\sqrt{x}-1}\) là nguyên
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Mà \(\sqrt{x}-1\) là số nguyên
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy tập hợp A có 2 phần tử
gọi biểu thức là A ta có :
để A nguyên thì n+9 phải chia hết cho n-6
n+9 : hết cho n-6
=> n - 6 +15 : hết cho n-6
vì n-6 : hết cho n-6
=> 15 : hết cho n-6
=> n-6 thuộc Ư(15)
=> n-6 thuộc {1,3,5,15}
=> n thuộc {7 , 9 , 11, 21}(thõa mãn điều kiện n thuộc N , n>6)
Q=3n+1n−1=3n−3+5n−1=3n−3n−1+1n−1=3+1n−1P=3n+2n−1=3n−3+5n−1=3n−3n−1+5n−1=3+5n−1
⇒1⋮n−1⇔n−1∈
(1)={±1;±3}⇒5⋮n−1⇔n−1∈Ư(5)={±1;±5}
⇒⎡⎢ ⎢ ⎢⎣n−1=1n−1=−1n−1=5n−1=−5⇔⎡⎢ ⎢ ⎢⎣n=2n=0n=6n=−4(tm)