Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Công thức số hạng tổng quát \({u_n} = 5n,\;n \in {N^*}\).
b) Số hạng đầu \({u_1} = 5\), \({u_n} = {u_{n - 1}} + 5\)
Suy ra hệ thức truy hồi: \(\left\{ \begin{array}{l}{u_1}\; = 5\\{u_n} = {u_{n - 1}} + 5\end{array} \right.\)
a) Ta có số hạng tổng quát của dãy số \({u_n} = 5n + 1\;\left( {n\; \in {N^*}} \right)\).
b) Các số hạng của dãy số là: 6; 11; 16; 21; 26.
Số hạng đầu của dãy số là: 6 và số hạng cuối của dãy số là 26.
a)Năm số hạng đầu:
Số hạng tổng quát của dãy số:
b)Năm số hạng đầu: 1;4;7;10;13
Số hạng tổng quát của dãy số: 3n + 1(n ∈ N)
\(u_n=3n+1\left(n\in N^{\cdot}\right)\) là công thức tổng quát của dãy \(\left(u_n\right)\) mà mỗi số hạng của nó là số tự nhiên chia hết cho 3 dư 1 nên chọn câu A
\(x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\Leftrightarrow x_{n+1}-\dfrac{1}{6}.2^{n+1}=\dfrac{1}{2}\left(x_n-\dfrac{1}{6}.2^n\right)\)
Đặt \(x_n-\dfrac{1}{6}.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{6}.2^1=\dfrac{8}{3}\\y_{n+1}=\dfrac{1}{2}y_n\end{matrix}\right.\)
\(\Rightarrow y_n\) là CSN với công bội \(q=\dfrac{1}{2}\)
\(\Rightarrow y_n=\dfrac{8}{3}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{4}{3.2^n}\)
\(\Rightarrow x_n=y_n+\dfrac{1}{6}.2^n=\dfrac{4}{3.2^n}+\dfrac{2^n}{6}\)
a) Năm số hạng đầu của dãy số: 1; 3; 5; 7; 9.
b) Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 2\;\left( {n \ge 2} \right)\).
a) Năm số hạng đầu của dãy số là: \(u_1=1^2=1;u_2=2^2=4;u_3=3^2=9;u_4=4^2=16;u_5=5^2=25\).
Số hạng tổng quát của dãy số un là \(u_n=n^2\) với n ∈ ℕ.
b) Dạng khai triển của dãy số \(u_1=1,u_2=4,u_3=9,u_4=16,...u_n=n^2\) ...
a) \({u_n} = 3n - 2\)
\( \Rightarrow {u_1} = 3.1 - 2 = 1\)
\( \Rightarrow {u_2} = 3.2 - 2 = 4\)
\( \Rightarrow {u_3} = 3.3 - 2 = 7\)
\( \Rightarrow {u_4} = 3.4 - 2 = 10\)
\( \Rightarrow {u_5} = 3.5 - 2 = 13\)
\( \Rightarrow {u_{100}} = 3.100 - 2 = 298\)
b) \({u_n} = {3.2^n}\)
\( \Rightarrow {u_1} = {3.2^1} = 6\)
\( \Rightarrow {u_2} = {3.2^2} = 12\)
\( \Rightarrow {u_3} = {3.2^3} = 24\)
\( \Rightarrow {u_4} = {3.2^4} = 48\)
\( \Rightarrow {u_5} = {3.2^5} = 96\)
\( \Rightarrow {u_{100}} = {3.2^{100}}\)
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)
\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)
\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)
\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)
\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)
\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)
a) Ta có: \({u_n} = 3n,\;\forall n \in {N^*}\).
b) Ta có: \({u_n} = 4n + 1,\forall n \in {N^*}\;\).