Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hệ số góc của \(\Delta\) là k \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(k;-1\right);\overrightarrow{n_d}=\left(3;1\right)\)
Yêu cầu bài toán :
\(\Leftrightarrow\frac{\left|3k-1\right|}{\sqrt{1+k^2}.\sqrt{10}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow2k^2-3k-2=0\)
\(\Leftrightarrow k=-\frac{1}{2}\) hoặc k = 2
Từ đó ta có được 2 tiếp tuyến là \(y=2x-2;y=2x-\frac{22}{27}\)
Tập xác định : \(D=R\)
Ta có : \(y'=8x^3+6x=2x\left(4x^2+3\right)\)
Gọi tiếp điểm là \(M\left(x_0;y_0\right)\)
Ta có : \(y_0=0\Rightarrow0=2x_0^4+3x_0^2-5\Leftrightarrow x_0^2=1\Leftrightarrow x_0=\pm1\)
* Với \(x_0=1\Rightarrow y'\left(1\right)=14\Rightarrow\Delta:y=14\left(x-1\right)\) hay \(y=14x-14\)
* Với \(x_0=-1\Rightarrow y'\left(1\right)=-14\Rightarrow\Delta:y=-14\left(x+1\right)\) hay \(y=-14x-14\)
b) Nhận thấy \(A\left(0;5\right)\) thuộc đồ thị hàm số do đó nó chính là tiếp điểm
Vì vậy \(x_0=0;y_0=-5;f'\left(x_0\right)=0\)
Suy ra tiếp tuyến là \(y=-5\)
Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)
Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)
\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)
a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :
\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)
* \(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)
* \(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)
b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)
Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :
\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)
\(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)
* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào
* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)
+ Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến
+ Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào
Tập xác định : \(D=R\backslash\left\{1\right\}\)
Ta có \(y'=\frac{-1}{\left(x-1\right)^2}\).
Gọi \(M\left(x_o;y_0\right)\) là tiếp điểm
a) Ta có \(y_0=0\Rightarrow x_0=\frac{1}{2}\Rightarrow y'\left(x_0\right)=-4\)
Phương trình tiếp tuyến là : \(y=-4x+2\)
b) Phương trình hoành độ giao điểm của d và (C) :
\(\frac{2x-1}{x-1}=x+1\Leftrightarrow x^2-2x=0\Leftrightarrow x=0;x=2\)
* \(x_0=0\Rightarrow\) phương trình tiếp tuyến là : \(y=-x\left(x-0\right)+1=-x+1\)
* \(x_0=2\Rightarrow\) phương trình tiếp tuyến là : \(y=-x+5\)
c) Ta có phương trình của đường thẳng \(\Delta:y-\frac{2x_0-1}{x_0-1}=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)\)
hay \(\Delta:\frac{1}{\left(x_0-1\right)^2}x+y-\frac{x_0}{\left(x_0-1\right)^2}-\frac{2x_0-1}{x_0-1}=0\)
Ta có : \(d\left(I;\Delta\right)=\frac{\left|\frac{2}{x_0-1}\right|}{\sqrt{\frac{1}{\left(x_0-1\right)^4}+1}}\le\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x_0-1\right)^4=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)
Suy ra có 2 tiếp tuyến là : \(\Delta_1:y=-x+1\)
\(\Delta_2:y=-x+5\)
d) Ta có : \(\Delta Ox=A\left(2x^2_0-2x_0+1;0\right)\)
\(OA=1\Leftrightarrow\left|2x^2_0-2x_0+1\right|=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=1\end{array}\right.\)
Suy ra phương trình tiếp tuyến là : \(y=-x+1\)
Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)
a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)
\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)
b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)
* \(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)
* \(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)
Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)
Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)
Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)
Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)
Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)
Ta có \(y=x^4-4x^3+4x^2\Rightarrow4x^3-12x^2+8x\)
a. PTHD giao điểm của (C) và Parabol \(y=x^2\) :
\(x^4-4x^3+4x^2=x^2\Leftrightarrow x^2\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x=0;x=1;x=3\)
* \(x=0\) ta có phương trình tiếp tuyến là \(y=0\)
* \(x=2\) ta có phương trình tiếp tuyến là \(y=1\)
* \(x=3\) ta có phương trình tiếp tuyến là \(y=24x-63\)
b. Gọi d là đường thẳng đi qua A, có hệ số góc k \(\Rightarrow d:y=k\left(x-2\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\left(2-x\right)^2x^2-k\left(x-2\right)\\4x\left(x-2\right)\left(x-1\right)=k\end{cases}\) có nghiệm
Thay k vào phương trình thứ nhất ta có :
\(x^4-4x^3+4x^2=\left(x-2\right)\left(4x^3-12x^2+8x\right)\)
\(\Leftrightarrow x\left(3x-4\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow x=0;x=2;x=\frac{4}{3}\)
* \(x=0\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
* \(x=2\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)
Gọi \(M\left(x_0;y_0\right)\)là tiếp điểm. Ta có : \(y'=-3x^2+3\)
a) Vì tiếp tuyến vuông góc với đường thẳng \(x+y-1=0\Rightarrow y=-x+1\) nên ta có :
\(y'\left(x_0\right)=1\Leftrightarrow-3x^2_0+3=1\Leftrightarrow x_0=\pm\frac{\sqrt{6}}{3}\)
* \(x_0=\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18+7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến
\(y=\left(x-\frac{\sqrt{6}}{3}\right)+\frac{18+7\sqrt{6}}{9}=x+\frac{18+7\sqrt{6}}{9}\)
* \(x_0=-\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18-7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến
\(y=\left(x+\frac{\sqrt{6}}{3}\right)+\frac{18-7\sqrt{6}}{9}=x+\frac{18-7\sqrt{6}}{9}\)
Vì \(\Delta\) tạo với \(\Delta'\) một góc bằng \(45^0\) nên \(\frac{\left|k-1\right|}{\sqrt{k^2+1}.\sqrt{2}}=\frac{\sqrt{2}}{2}\Leftrightarrow k=0\)
Ta có \(f'\left(x_0\right)=k\Leftrightarrow-3x^2_0+3=0\Leftrightarrow x_0=\pm1\)
* \(x_0=1\Rightarrow y_0=4\Rightarrow\Delta:y-4=0\)
* \(x_0=-1\Rightarrow y_0=-2\Rightarrow\Delta:y+2=0\)
Gọi \(M\left(x_0;2x^3_0+3x^2_0-12x_0-1\right)\) là tiếp điểm
\(\Delta:y=\left(6x^2_0+6x_0-12\right)\left(x-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)
Vì \(O\in\Delta\) nên \(0=\left(6x^2_0+6x_0-12\right)\left(-x_0\right)+2x^3_0+3x^2_0-12x_0-1\)
\(\Leftrightarrow4x^3_0+3x^2_0+1\Leftrightarrow x_0=-1\Rightarrow y_0=12;y'\left(x_0\right)=-12\)
Vậy \(\Delta:y=-12x\)