\(y=ax+b\) ứng với hình sau :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a) Ta thấy đường thẳng \(y=ax+b\) đi qua hai điểm \(\left(0;3\right)\)\(\left(1;0\right)\). Vậy ta có :

\(\left\{{}\begin{matrix}3=b\\0=a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=3\end{matrix}\right.\)

Đường thẳng có phương trình là \(y=-3x+3\)

b) \(y=-4x\)

c) \(y=x-2\)

10 tháng 4 2017

Hình 22

y=ax^2 +bx+c thỏa mãn hệ

\(\left\{{}\begin{matrix}y\left(0\right)=-4\Rightarrow c=-4\\y\left(-3\right)=9a-3b-4=0\\y\left(-6\right)=36a-6b-4=-4\end{matrix}\right.\)

(3) -(2) nhân 2

\(36a-18a-4+8=-4\Rightarrow18a=-8\Rightarrow a=\dfrac{-8}{18}=\dfrac{-4}{9}\)

Thế vào (2) -4-3b-4=0 => b=-8/3

Vậy pa ra bo; cho hình 22 là

\(y=-\dfrac{4}{9}x^2-\dfrac{8}{3}x-4\)

17 tháng 5 2017

a) \(23,3\) phút; \(540^0;27,6^0C\)

b) Khi lấy số trung bình làm đại diện cho các số liệu thống kê về quy mô và độ lớn, có thể xem rằng mỗi ngày bạn A đi từ nhà đến trường đều mất 23,3 phút.

Tương tự, nêu ý nghĩa số trung bình của các số liệu thống kê cho ở bảng 7 và bảng 8.

10 tháng 4 2017

Lời giải

Parabol nhận trục tung là trục đối xứng

(điểm thấp nhất thuộc đồ thị có tọa độ A(4,ya)

\(y\left(4\right)=-\dfrac{1}{2}.4^2=-8\)

Vậy chiều cao cổng là 8m

10 tháng 4 2017

Pra bol đối xứng qua trục Tung => điểm cao nhất thuộc Parabol có tọa độ (2,h)

\(x=2\Rightarrow y=\dfrac{1}{2}\Rightarrow a.2^2=\dfrac{1}{2}\Rightarrow a=\dfrac{1}{8}\)

15 tháng 4 2017

a) Bảng phân bố tần số (về tuổi thọ bóng đèn điện) có thể viết dưới dạng như sau:

Số trung bình về tuổi thọ của bóng đèn trong bảng phân bố trên là:

.(3x1150 + 6x1160 + 12x1170 + 6x1180 + 3x1190)

= 1170.

b) Số trung bình về chiều dài lá cây dương xỉ trong bài tập 2 trong là:

.(8x15 + 18x25 + 24x35 + 10x45) = 31 (cm).

2 tháng 4 2017

a). Nếu dùng máy tính CASIO fx-500 MS ta làm như sau

Ấn

Ấn liên tiếp phím cho đến khi màn hình hiện ra

Ấn liên tiếp để lấy 4 chữ số phần thập phân. Kết quả hiện ra trên màn hình là 8183.0047.

b)

Kết quả 51139.3736.


29 tháng 5 2017

a) Phương sai và độ lệch chuẩn trong bài tập 1. Bảng phân bố tần số viết lại là

Số trung bình: \(\overline{x} = 1170\)

Phương sai: \(S_{x}^{2}=\frac{1}{30}(3x1150^{2}+6x1160^{2}+12x1170^{2}+6x1180^{2}+3x1190^{2})-1170^{2} = 120\)

Độ lệch chuẩn: Sx.= \(\sqrt{S_{x}^{2}}=\sqrt{120} ≈ 10,9545\)

b) Phương sai và độ lệch chuẩn, bảng thống kê trong bài tập 2 \(\S 1.\)

\(S_{x}^{2}=\frac{1}{60}(8x15^{2}+18x25^{2}+24x35^{2}+10x45^{2}) - 312 = 84 \)

Sx ≈ 9,165.

2 tháng 4 2017

a) Trường hợp thứ nhất, xem trong tóm tắt lí thuyết.

b)

c)

d)


17 tháng 5 2017

Thống kê