K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)

mà (d) đi qua A(0;2) 

nên phương trình đường thẳng (d) là:

3(x-0)+(-2)(y-2)=0

=>3x-2y+4=0

b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương

=>VTPT của (d) là (2;3)

mà (d) đi qua A(0;2)

nên phương trình đường thẳng (d) là:

2(x-0)+3(y-2)=0

=>2x+3y-6=0

c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

=>VTPT là (-5;2)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến

Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:

-5(x+1)+2(y-5)=0

=>-5x-5+2y-10=0

=>-5x+2y-15=0

d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến

mà (d) đi qua B(-1;5) 

nên phương trình đường thẳng (d) là:

2(x+1)+5(y-5)=0

=>2x+2+5y-25=0

=>2x+5y-23=0

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;3} \right)\)

\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát

          \(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)

b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u  = \left( {3; - 1} \right)\)

\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y =  - 1 - t\end{array} \right.\)

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) \(\Delta \) song song với đường thẳng \(3x + y + 9 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ pháp tuyến là \(\overrightarrow n  = \left( {3;1} \right)\)

\(\Delta \) đi qua điểm \(A(2;1)\) nên ta có phương trình tổng quát

  \(3\left( {x - 2} \right) + \left( {y - 1} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)

\(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;1} \right)\) nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 3} \right)\)

Phương trình tham số của đường thẳng \(\Delta \) là:

 \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 3t\end{array} \right.\)

b) \(\Delta \) vuông góc với đường thẳng \(2x - y - 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ chỉ phương là \(\overrightarrow u  = \left( {2; - 1} \right)\)

\(\Delta \) đi qua điểm \(B( - 1;4)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 4 - t\end{array} \right.\)

\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1} \right)\) nên có vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;2} \right)\)

Phương trình tổng quát của đường thẳng \(\Delta \)là:

  \(\left( {x + 1} \right) + 2\left( {y - 4} \right) = 0 \Leftrightarrow x + 2y - 7 = 0\)

a: Vì Δ//d nên Δ: 3x-4y+c=0

Thay x=1 và y=4 vào Δ, ta được:

c+3-16=0

=>c=13

b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0

Thay x=-3 và y=-5 vào Δ, ta được:

c+4*(-3)+3(-5)=0

=>c-27=0

=>c=27

=>4x+3y+27=0

6 tháng 3 2022

=)

6 tháng 3 2022

;-;

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

2 tháng 5 2023

loading...  d lâu r ko làm ko nhớ -)(

13 tháng 12 2020

a) Vì đồ thị hàm số ax+b song song với (d1) nên a=3

hay hàm số có dạng là y=3x+b

Vì đồ thị hàm số y=3x+b đi qua điểm C(3;-2)

nên Thay x=3 và y=-2 vào hàm số y=3x+b, ta được: 

\(3\cdot3+b=-2\)

\(\Leftrightarrow b+9=-2\)

hay b=-11

Vậy: Hàm số có dạng là y=3x-11

b) Vì (d)⊥(d2) nên \(a\cdot4=-1\)

hay \(a=-\dfrac{1}{4}\)

Vậy: Hàm số có dạng là \(y=-\dfrac{1}{4}x+b\)

Vì (d) đi qua D(2;-1) nên

Thay x=2 và y=-1 vào hàm số \(y=-\dfrac{1}{4}x+b\), ta được: 

\(-\dfrac{1}{4}\cdot2+b=-1\)

\(\Leftrightarrow b-\dfrac{1}{2}=-1\)

hay \(b=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{4}\) và \(b=-\dfrac{1}{2}\)

13 tháng 12 2020

Thanks!❤️