Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải
đường thẳng chắn trên hai trucj tọa đọ hai đoạn thẳng = nhau => Hệ số góc k=-1 hoặc 1
\(\left\{{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\) đi qua điểm M \(\left\{{}\begin{matrix}b=2-1=1\\b=2+1=3\end{matrix}\right.\)
Phương trình hệ số đường thẳng cần tìm
\(\begin{matrix}d1:y=x+1\\d2:y=-x+3\end{matrix}\)
Phương trình tổng quát
d1: x-y-1=0
d2:x+y-3=0
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)
PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)
Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)
MH=2 =>(4t-2)2+(3t+1)2=4
<=>25t2+10t+1=0
<=>(5t+1)2=0
<=>\(t=-\dfrac{1}{5}\)
=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)
M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'
=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)
b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)là \(\overrightarrow{n}=\left(3;-4\right)\)(1)
Lấy I(-1;-1) => I thuộc \(\Delta\)
Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)
Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0
hay 3x-4y-21=0
c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2
=>Phương trình đường tròn:
(C): (x-1)2+(y+2)2=4
Giả sử đường thẳng cần tìm có phương trình dạng \(\frac{x}{a}+\frac{y}{b}=1\) với \(ab\ne0\) suy ra \(\frac{1}{a}+\frac{2}{b}=1\) (1) và \(\left|a\right|=\left|b\right|\) (2)
Từ (2) suy ra hoặc a=b hoặc a=-b.
- Khi a=b, thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}=1\Leftrightarrow a=3\)
Vậy \(\Delta:\frac{x}{3}+\frac{y}{3}=1\) hay \(x+y-3=0\)
- Khi a=-b thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}=1\Leftrightarrow a=-1\) vậy \(\Delta:\frac{x}{-1}+\frac{y}{1}=1\) hay \(x-y+1=0\)
Vậy ta tìm đươc 2 đường thẳng đi qua M và chắn trên 2 trục tọa độ các đoạn thẳng bằng nhau là
\(x+y-3=0\) và \(x-y+1=0\)
O b a 2 1 y x