K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: F(-1)=1/2(-1)^2=1/2

=>A(-1;1/2)

f(2)=1/2*2^2=2

=>B(2;2)

Theo đề, ta có hệ:

-m+n=1/2 và 2m+n=2

=>m=1/2 và n=1

b: O(0;0); A(-1;0,5); B(2;2)

\(OA=\sqrt{\left(-1-0\right)^2+0,5^2}=\dfrac{\sqrt{5}}{2}\)

\(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(2+1\right)^2+\left(2-0,5\right)^2}=\dfrac{3}{2}\sqrt{5}\)

\(cosO=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-1}{\sqrt{10}}\)

=>\(sinO=\dfrac{3}{\sqrt{10}}\)

\(S_{OAB}=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot2\sqrt{2}\cdot\dfrac{3}{\sqrt{10}}=\dfrac{3}{2}\)

=>\(OH=\dfrac{2\cdot\dfrac{3}{2}}{\dfrac{3}{2}\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

2: Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\-x_A+1=0\end{matrix}\right.\Leftrightarrow A\left(1;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x_B=0\\y_B=-0+1=1\end{matrix}\right.\)

Vậy: B(0;1)

\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)

3: Vì (d')//(d) nên a=-1

Vậy: (d'): y=-x+b

Thay x=0 và y=-2 vào (d'), ta được:

b-0=-2

hay b=-2

3: Vì (d')//(d) nên a=-1

Vậy: (d'): y=-x+b

Thay x=0 và y=-2 vào (d'), ta được:

b-0=-2

hay b=-2

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
1. Đồ thị $y=-x+1$ có dạng như sau:

2. $A\in Ox$ nên $y_A=0$

Ta có: $y_A=-x_A+1\Leftrightarrow 0=-x_A+1\Leftrightarrow x_A=1$
$B\in Oy$ nên $x_B=0$

Ta có: $y_B=-x_B+1=-0+1=1$

Diện tích tam giác $OAB$:

$S=\frac{1}{2}OA.OB=\frac{1}{2}|x_A|.|y_B|=\frac{1}{2}.1.1=\frac{1}{2}$ (đơn vị diện tích)

3.

Vì $(d')$ song song với $(d)$ nên nó có dạng $y=-x+m$

Tung độ gốc $=-2$ tức là $m=-2$

Vậy $(d'): y=-x-2$