Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
Gọi (d): y=ax+b
Vì (d)//y=2x+1 nên a=2
Vậy: (d): y=2x+b
Thay x=2 và y=3 vào (d), ta được:
b+4=3
hay b=-1
a: Vì (d)//(d') nên \(a=-\dfrac{2}{3}\)
Vậy: \(\left(d\right):y=-\dfrac{2}{3}x+b\)
Thay x=4 và y=-3 vào (d), ta được:
\(-\dfrac{2}{3}\cdot4+b=-3\)
\(\Leftrightarrow b=-3+\dfrac{8}{3}=-\dfrac{1}{3}\)
b: Vì (d) vuông góc với (d') nên \(\dfrac{1}{3}a=-1\)
hay a=-3
vậy: (d): y=-3x+b
Thay x=2 và y=3 vào (d), ta được:
b-6=3
hay b=9
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
Gọi đường thẳng cần tìm là `y=ax+b` `(1)`
`a)` Thay `A(4;0);B(-1;2)` vào `(1)` có hệ:
`{(4a+b=0),(-a+b=2):}<=>{(a=2/5),(b=-8/5):}`
`=>` Ptr đường thẳng `(1)` là: `y=2/5x-8/5`
`b)-2x+y=3<=>y=2x-3`
`(1) \bot y=2x-3<=>a.2=-1<=>a=-1/2`
Thay `a=-1/2; M(-1;2)` vào `(1)` có:
`2=-1/2 .(-1)+b<=>b=3/2`
`=>` Ptr đường thẳng `(1)` là: `y=-1/2x+3/2`.
a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)
Vậy: (d): y=3x+b
Thay x=1 và y=2 vào (d), ta được:
\(b+3\cdot1=2\)
=>b+3=2
=>b=-1
vậy: (d): y=3x-1
b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3
=>(d): y=ax+3
Thay x=-4 và y=7 vào (d), ta được:
\(-4a+3=7\)
=>-4a=4
=>a=-1
vậy: (d): y=-x+3
c: A(1;4); B(4;8)
=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)
=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)
c: y=2x-6
=>2x-y-6=0
Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;
\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)
a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Suy ra: (d): y=3x+b
Thay x=2 và y=-2 vào (d), ta được:
\(3\cdot2+b=-2\)
\(\Leftrightarrow b=-8\)(thỏa ĐK)
Vậy: (d): y=3x-8
b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)
hay \(a=-\dfrac{1}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+b\)
Thay x=-3 và y=4 vào (d), ta được:
\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)
\(\Leftrightarrow b+\dfrac{3}{2}=4\)
hay \(b=\dfrac{5}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)
a: (d) vuông góc (d1)
=>a*(-1/2)=-1
=>a=2
=>(d): y=2x+b
Thay x=-2 và y=5 vào (d), ta được:
b-4=5
=>b=9
b:
Sửa đề: (d1): y=-3x+4
Tọa độ giao của (d2) và (d3) là:
3x-7/2=2x-3 và y=2x-3
=>x=1/2 và y=1-3=-2
(d)//(d1)
=>(d): y=-3x+b
Thay x=1/2 và y=-2 vào (d), ta được:
b-3/2=-2
=>b=1/2
=>y=-3x+1/2
a. Gọi pt đường thẳng có dạng \(y=ax+b\)
Do đường thẳng đi qua M và B nên: \(\left\{{}\begin{matrix}-a+b=2\\3b+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{2}\\b=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow y=-\dfrac{3}{2}x+\dfrac{1}{2}\)
b. Gọi đường thẳng có dạng \(y=ax+b\)
Do đường thẳng song song y=2x+3 và qua M nên:
\(\left\{{}\begin{matrix}a=2\\-2a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\-4+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
\(\Rightarrow y=2x+7\)