K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi (d): y=ax+b là đường thẳng cần tìm

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=1\\3a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=0\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)

b: Vì (d)//y=2x nên a=2

Vậy: (d): y=2x+b

Thay x=3 và y=1 vào (d), ta được:

b+6=1

hay b=-5

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Xét tam giác \(ABC\) có \(B'C'//BC\) nên theo định lí Thales ta có:

\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AC'}}{8}\). Do đó, \(AC' = \frac{{2.8}}{6} = \frac{8}{3}\left( {cm} \right)\).

Vậy \(AC' = \frac{{16}}{3}cm\).

b) Xét tam giác \(ABC\) có \(C'D//AB\) nên theo định lí Thales ta có:

\(\frac{{BD}}{{BC}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{{BD}}{{10}} = \frac{{\frac{8}{3}}}{8}\). Do đó, \(BD = \frac{{10.\frac{8}{3}}}{8} = \frac{{10}}{3}\left( {cm} \right)\).

Vậy \(BD = \frac{{10}}{3}cm\).

Ta có: \(BB' = AB - AB' = 6 - 2 = 4cm\)

Vì \(\left\{ \begin{array}{l}B'C'//BC\\C'D//AB\end{array} \right. \Rightarrow \left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right.\) (do \(D \in BC;B' \in AB\))

Xét tứ giác \(B'C'DB\) có

\(\left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right. \Rightarrow \) tứ giác \(B'C'DB\) là hình bình hành (dấu hiệu nhận biết)

\( \Rightarrow \left\{ \begin{array}{l}B'C' = BD = \frac{{10}}{3}cm\\BB' = C'D = 4cm\end{array} \right.\) (tính chất hình bình hành)

c) Ta có: \(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AC'}}{{AC}} = \frac{{\frac{8}{3}}}{8} = \frac{1}{3};\frac{{BC'}}{{BC}} = \frac{{\frac{{10}}{3}}}{{10}} = \frac{1}{3}\)

Do đó, \(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} = \frac{{B'C'}}{{BC}}\).

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

a) Vẽ đường thẳng y = 2x -1 trên mặt phẳng tọa độ

Với x = 0 thì y = -1, ta được điểm A(0; -1) thuộc đồ thị hàm số y = 2x – 1

Với x = 1 thì y = 1, ta được điểm B(1; 1) thuộc đường thẳng y = 2x – 1

Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm A(0; -1) và điểm B(1; 1)

b) Vì đường thẳng y = ax + b \(\left( {a \ne 0} \right)\) song song với đường thẳng y = 2x -1 nên a = 2

Đường thẳng dã cho là: y = 2x + b

Vì đường thẳng y = 2x + b đi qua điểm M(1; 3) nên:

3 = 2.1 + b suy ra b = 1

Vậy đường thẳng cần tìm là; y = 2x + 1

* Vẽ đường thẳng y = 2x + 1

Với x = 0 thì y = 1, ta được điểm P(0, 1) thuộc đồ thị hàm số y = 2x + 1

Với x = 1 thì y = 1, ta được điểm Q(1; 3) thuộc đồ thị hàm số y = 2x + 1

Đồ thị hàm số y = 2x + 1 là đường thẳng đi qua hai điểm P(0; 1) và Q(1; 3)

26 tháng 2 2022

AD//BC; BD//AC nên ADBC là hình bình hành.

AF//BC; AB//FC nên AFCB là hình bình hành.

AC//BE; AB//CE nên ACEB là hình bình hành.

-Gọi G là giao của CD và BF.

-Ta có: ADBC là hình bình hành (cmt)

\(\Rightarrow\)CD đi qua trung điểm AB.

-Ta có: AFCB là hình bình hành (cmt)

\(\Rightarrow\)BF đi qua trung điểm AC.

-Xét △ABC có:

CD là trung tuyến (CD đi qua trung điểm AB)

BF là trung tuyến (BF đi qua trung điểm AC)

G là giao của CD và BF (gt)

\(\Rightarrow\) G là trọng tâm của △ABC.

\(\Rightarrow\)AG đi qua trung điểm BC (1)

-Ta có: ACEB là hình bình hành (cmt)

\(\Rightarrow\) AE đi qua trung điểm BC (2)

-Từ (1) và (2) suy ra: A,G,E thẳng hàng hay ba đường thẳng AE,BF,CD đồng quy tại G.

 

23 tháng 1 2022

a) Xét tam giác ADC: EG // DC (gt).

=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)

Xét tam giác ACB: HG // CB (gt).

=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)

Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)

Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)

=> HE // BD (Định lý Talet đảo).

23 tháng 1 2022

có câu b không cậu mình cần câu b á

 

18 tháng 8 2020

Bạn tự vẽ hình nhé.

Cho ABCD là hình thang có đáy lớn CD. Qua K kẻ đường thẳng song song BD cắt BC ở Q.

a, Vì AB//CD nên AB//CI.

Đường thẳng song song với BC đi qua A cắt CD tại I nên AI//CD

Xét tứ giác ABCI có:

\(\left\{{}\begin{matrix}AB//CI\\AI//BC\end{matrix}\right.\)

=> T/giác ABCI là hình bình hành

b, Vì AB//CD nên DK//CD

Đường thẳng song song với AD đi qua A cắt CD ở K nên BK//AD

Xét tứ giác ABKD có

\(\left\{{}\begin{matrix}AB//DK\\BK//AD\end{matrix}\right.\)

=> t/giác ABDK là hbh

=> AB=DK

c, Theo câu a, t/g ABCI là hbh nên AB=CI

Mà AB=DK ( c/m câu b )

Suy ra: DK=CI

=> DK + CD = CI + CD

<=> DI=CK