Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Năm số hạng đầu của dãy số: 1; 3; 5; 7; 9.
b) Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 2\;\left( {n \ge 2} \right)\).
a. Năm số hạng đầu của dãy số
b. Dự đoán công thức số hạng tổng quát của dãy số:
un =√(n+8) (1)
Rõ ràng (1) đúng với n = 1
Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)
⇒ (1) đúng với n = k + 1
⇒ (1) đúng với mọi n ∈ N*.
a) Các số chính phương nhỏ hơn 50: \(1;4;9;16;25;36;49\).
b) Công thức số hạng tổng quát \({u_n} = {n^2},\;\left( {n\; \in {N^*}} \right)\).
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_2}.q = {u_1}.{q^2}\)
\({u_4} = {u_3}.q = {u_1}.{q^3}\)
\({u_5} = {u_4}.q = {u_1}.{q^4}\)
b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).
a) Ta có:
- Số hạng thứ nhất: \({u_1}\)
- Số hạng thứ hai: \({u_2} = {u_1}.q\)
- Số hạng thứ ba: \({u_3} = {u_2}.q = \left( {{u_1}.q} \right).q = {u_1}.{q^2}\)
- Số hạng thứ tư: \({u_4} = {u_3}.q = \left( {{u_1}.{q^2}} \right).q = {u_1}.{q^3}\)
- Số hạng thứ năm: \({u_5} = {u_4}.q = \left( {{u_1}.{q^3}} \right).q = {u_1}.{q^4}\)
b) Dự đoán công thức tính: \({u_n} = {u_1}.{q^{n - 1}}\)
\(a,u_1;u_2=u_1+d;u_3=u_1+2d;u_4=u_1+3d;u_5=u_1+4d\\ b,u_n=u_1+\left(n-1\right)d\)
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) \({u_1} = 1\)
\( \Rightarrow {u_2} = 2.1 = 2\)
\( \Rightarrow {u_3} = 3.2 = 6\)
\( \Rightarrow {u_4} = 4.6 = 24\)
\( \Rightarrow {u_5} = 5.24 = 120\)
b)
Ta có:
\({u_2} = 2 = 2.1 \)
\({u_3} = 6= 1.2.3 \)
\({u_4} = 24 = 1.2.3.4\)
\({u_5} = 120 = 1.2.3.4.5\)
\( \Rightarrow {u_n} = 1.2.3....n = n!\).
Ta có: 1, 4, 9, 16, 25.
Công thức tính số chính phương là \({n^2},\;\left( {n\; \in {N^*}} \right)\).