Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
A= \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
2A= \(2.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)
2A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)
⇒ 2A- A= \(1-\dfrac{1}{2^{100}}\)
⇒ A= \(1-\dfrac{1}{2^{100}}\)
B= \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
3B= \(3.\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
3B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
⇒ 3B- B= \(1-\dfrac{1}{3^{100}}\)
⇒ B.(3-1)= \(1-\dfrac{1}{3^{100}}\)
⇒ 2B= \(1-\dfrac{1}{3^{99}}\)
⇒ B= \(\left(1-\dfrac{1}{3^{99}}\right):2\)
⇒ B= \(\dfrac{1}{2}-\dfrac{1}{2.3^{99}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
=>\(A=1-\frac{1}{2^{100}}\)
1/2.A=1/22+1/23+...+1/2101
=>1/2A-A=1/2101-1/2
=>-1/2A=1/2101-1/2
A=(1/2101-1/2):(-1/2)=(1/2101-1/2).(-2)
=1-1/2100
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=> 2A - A = 1 - \(\frac{1}{2^{100}}\)
<=> A = 1 - \(\frac{1}{2^{100}}\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)
\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
A=1+2^2+...+2^100
2A=2+2^2+2^3+...+2^101
2A=2^101-1
A=(2^101-1):2
\(B=5^1+5^2+...+5^{199}\)
\(\Rightarrow5B=5^2+5^3+...+5^{200}\)
\(\Rightarrow5B-B=\left(5^2+5^3+...+5^{200}\right)-\left(5^1+5^2+...+5^{199}\right)\)
\(\Rightarrow4B=5^{200}-5\)
\(\Rightarrow B=\frac{5^{200}-5}{4}\)
Trả lời
A = 1 + 21 + 22 + ... + 299 + 2100
2A = 2 + 22 + 23 + ... + 2100 + 2101
2A - A = A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 21 + 22 + ... + 299 + 2100 )
A = 2101 - 1
\(A=1+2^1+2^2+...+2^{99}+2^{100}\)
\(2A=2+2^2+...+2^{100}+2^{101}\)
Ta có:\(2A-A=\left(2^1+2^2+...+2^{100}\right)-\left(1+2^1+2^2+...+2^{101}\right)\)
\(A=2^{101}-1\)
#hok tốt#
S=1+22+24+...+2100
4S=22B=22+24+26+...+2102
3B=4B-B=2102-1
=> B = \(\frac{2^{102}-1}{3}\)
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
2A=\(1+\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)
2A-A=\(1-\frac{1}{2^{100}}\)
A=\(\frac{2^{100}-1}{2^{100}}\)