K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

2A=\(1+\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)

2A-A=\(1-\frac{1}{2^{100}}\)

A=\(\frac{2^{100}-1}{2^{100}}\)

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

14 tháng 7 2018

A= \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

2A= \(2.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)

2A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

⇒ 2A- A= \(1-\dfrac{1}{2^{100}}\)

⇒ A= \(1-\dfrac{1}{2^{100}}\)

B= \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

3B= \(3.\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

3B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

⇒ 3B- B= \(1-\dfrac{1}{3^{100}}\)

⇒ B.(3-1)= \(1-\dfrac{1}{3^{100}}\)

⇒ 2B= \(1-\dfrac{1}{3^{99}}\)

⇒ B= \(\left(1-\dfrac{1}{3^{99}}\right):2\)

⇒ B= \(\dfrac{1}{2}-\dfrac{1}{2.3^{99}}\)

10 tháng 5 2016

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

=>\(A=1-\frac{1}{2^{100}}\)

28 tháng 9 2015

1/2.A=1/22+1/23+...+1/2101

=>1/2A-A=1/2101-1/2

=>-1/2A=1/2101-1/2

A=(1/2101-1/2):(-1/2)=(1/2101-1/2).(-2)

=1-1/2100

5 tháng 9 2018

Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

=> 2A - A = 1 - \(\frac{1}{2^{100}}\)

<=> A = 1 - \(\frac{1}{2^{100}}\)

5 tháng 9 2018

\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)

\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}\)

26 tháng 9 2017

A=1+2^2+...+2^100

2A=2+2^2+2^3+...+2^101

2A=2^101-1

A=(2^101-1):2

26 tháng 9 2017

\(B=5^1+5^2+...+5^{199}\)

\(\Rightarrow5B=5^2+5^3+...+5^{200}\)

\(\Rightarrow5B-B=\left(5^2+5^3+...+5^{200}\right)-\left(5^1+5^2+...+5^{199}\right)\)

\(\Rightarrow4B=5^{200}-5\)

\(\Rightarrow B=\frac{5^{200}-5}{4}\)

Trả lời

A = 1 + 21 + 22 + ... + 299 + 2100 

2A = 2 + 22 + 23 + ... + 2100 + 2101

2A - A = A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 21 + 22 + ... + 299 + 2100 )

A = 2101 - 1

\(A=1+2^1+2^2+...+2^{99}+2^{100}\)

\(2A=2+2^2+...+2^{100}+2^{101}\)

Ta có:\(2A-A=\left(2^1+2^2+...+2^{100}\right)-\left(1+2^1+2^2+...+2^{101}\right)\)

\(A=2^{101}-1\)

#hok tốt#

S=1+22+24+...+2100

4S=22B=22+24+26+...+2102

3B=4B-B=2102-1

=> B = \(\frac{2^{102}-1}{3}\)

25 tháng 10 2017

a/ta gọi biểu thức trên là A.

ta có: A=1+2+22+...+2100

     2A= 2x(1+2+22+...+2100)

     2A= 2x1+2x2+22x2+...+2100x2

     2A= 2+22+23+....+2101

     2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)

     A= 2101-1

b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)