Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x^2 - 2x + 1 + 4y^2 + 4y + 1
= ( x - 1 )^2 + ( 2y + 1 )^2
b) = 4x^2 + 4x +1 + 4y^2 + 4y + 1
= ( 2x + 1 )^2 + ( 2y + 1 )^2
c) = 9x^2 - 12x + 4 + 16y^2 - 24y + 9
=( 3x - 2 )^2 + ( 4y - 3 )^2
d) = 4x^2 + 4xy+ y^2 + x^2 - 2xz + z^2
= ( 2x + y )^2 + ( x - z )^2
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
a, \(27^2+13^2+2.37.13=\left(27+13\right)^2\)
b, \(87^2+57^2-174.67=\left(87-57\right)^2\)
c, \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
d, \(4x^2-12x-y^2+2y+1\)
\(=4\left(x^2-3x\right)-\left(y^2-2y+1\right)+2\)
\(=4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{9}{4}\right)-\left(y-1\right)^2+2\)
\(=\left(x-\dfrac{3}{2}\right)^2-\left(y-1\right)^2-7\)
\(4x^2+4xy+y^2\)
\(=\left(2x\right)^2+2.2x.y+y^2\)
\(=\left(2x+y\right)^2\)
hằng đẳng thức số 1 mà bạn~
Bài 1:
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(4x^2-y^2-12x+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
\(P=4+8x-16x^2\)
\(P=-\left(16x^2-8x+4\right)\)
\(P=-\left[\left(4x\right)^2-2.4x+1+3\right]\)
\(P=-\left(4x-1\right)^2-3\)
Vì \(-\left(4x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(4x-1\right)^2-3\le-3\) với mọi x
\(\Rightarrow Pmax=-3\Leftrightarrow4x-1=0\)
\(\Rightarrow4x=1\)
\(\Rightarrow x=\dfrac{1}{4}\)
Vậy Pmax = -3 <=> x = 1/4
b)\(4x^2+4x+5+y^2-4y\)
\(=\left[\left(2x\right)^2+4x+1\right]+\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2+\left(y-2\right)^2\)
c) \(4x^2+5y^2+4xy-12y+9\)
\(=\left(4x^2+4xy+y^2\right)+\left(4y^2-12y+9\right)\)
\(=\left(2x+y\right)^2+\left(2y-3\right)^2\)
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
=(4x^2+12x+9)+(y^2+4y+4)
=(2x+32)+(y+2)2
4x2 + y2 + 12x + 4y + 13
= 4x2 + 12x + 9 + y2 + 4y + 4
= (2x + 3)2 + (y + 2)2