Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(\sqrt{6}+\sqrt{5}\right)^2\\ b,=\left(\sqrt{7}-\sqrt{3}\right)^2\\ c,=\left(\sqrt{3}+\sqrt{5}\right)^2\\ d,=\left(2+\sqrt{3}\right)^2\\ e,=\left(2\sqrt{2}-1\right)^2\)
a: \(=\left(\sqrt{6}+\sqrt{5}\right)^2\)
b: \(=\left(\sqrt{7}-\sqrt{3}\right)^2\)
1/ \(7-2\sqrt{6}=\left(\sqrt{6}\right)^2-2\sqrt{6}+1\)
\(=\left(\sqrt{6}-1\right)^2\)
2/ \(10+2\sqrt{21}=\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2\)
\(=\left(\sqrt{7}+\sqrt{3}\right)^2\)
4/ \(10+4\sqrt{6}=2^2+2.2.\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=\left(2+\sqrt{6}\right)^2\)
5/ \(11-2\sqrt{30}=\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{5}+\left(\sqrt{5}\right)^2\)
= \(\left(\sqrt{6}-\sqrt{5}\right)^2\)
8/ \(11+4\sqrt{7}=2^2+2.2.\sqrt{7}+\left(\sqrt{7}\right)^2\)
= \(\left(2+\sqrt{7}\right)^2\)
10/ \(12+6\sqrt{3}=3^2+2.3.\sqrt{3}+\left(\sqrt{3}\right)^2\)
= \(\left(3+\sqrt{3}\right)^2\)
\(a,8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}+1^2=\left(\sqrt{7}-1\right)^2\)
\(b,8-2\sqrt{15}=\sqrt{5}^2-2.\sqrt{3}.\sqrt{5}+\sqrt{3}^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(c,8+4\sqrt{3}=2^2+2.2.\sqrt{3}+\sqrt{3}^2=\left(2+\sqrt{3}\right)^2\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
1) \(5-2\sqrt{6}=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
2) \(8+2\sqrt{15}=\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}+\sqrt{3}\right)^2\)
3) \(10-2\sqrt{21}=\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{7}-\sqrt{3}\right)^2\)
4) \(21+6\sqrt{6}=\left(\sqrt{18}\right)^2+2.\sqrt{18}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}+\sqrt{3}\right)^2\)
5) \(14+8\sqrt{3}=\left(\sqrt{8}\right)^2+2.\sqrt{8}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2\)
6) \(36-12\sqrt{5}=\left(\sqrt{30}\right)^2-2.\sqrt{30}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{30}-\sqrt{6}\right)^2\)
7) \(25+4\sqrt{6}=\left(\sqrt{24}\right)^2+2\sqrt{24}.1+1^2=\left(\sqrt{24}+1\right)^2\)
8) \(98-16\sqrt{3}=\left(\sqrt{96}\right)^2-2\sqrt{96}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{96}-\sqrt{2}\right)^2\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\)
b) \(23-8\sqrt{7}=4^2-2.4.\sqrt{7}+\left(\sqrt{7}\right)^2=\left(4-\sqrt{7}\right)^2\)
c) \(4-2\sqrt{3}=\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2=\left(\sqrt{3}-1\right)^2\)
d) \(11+6\sqrt{2}=3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(3+\sqrt{2}\right)^2\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)
c) \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
d) \(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)
d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
a.
ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{y-1}-3=0$
$\Leftrightarrow x=4; y=10$
b.
ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$
$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$
$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$
b: \(10-2\sqrt{21}=\left(\sqrt{7}-\sqrt{3}\right)^2\)
c: \(8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)