K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: \(A=2\cdot2^2\cdot...\cdot2^{10}\)

=>\(A=2^{1+2+...+10}\)

=>\(A=2^{55}\)

b: \(B=3\cdot3^3\cdot3^5\cdot...\cdot3^{99}\)

\(=3^{1+3+5+...+99}\)

\(=3^{50^2}=3^{2500}\)

17 tháng 12 2023

Anh ơi em on rồi ạ anh trả lời câu hỏi của em với nha anh thanks anh nhiều ạ

13 tháng 10 2023

a) \(\dfrac{9}{4}-3y+y^2\)

\(=\left(\dfrac{3}{2}\right)^2-3y+y^2\)

\(=y^2-2\cdot\dfrac{3}{2}\cdot y+\left(\dfrac{3}{2}\right)^2\)

\(=\left(y-\dfrac{3}{2}\right)^2\)

b) \(x^3+6x^2y+12xy^2+8y^3\)

\(=x^3+6x^2y+12xy^2+\left(2y\right)^3\)

\(=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)

\(=\left(x+2y\right)^2\)

12 tháng 7 2020

\(a,(x^3-x+1)(2x+1)+(x-1)(x+2)\)

\(=2x^4-2x^2+2x+x^3-x+1+x^2-x+2x-2\)

\(=2x^4+x^3+(-2x^2+x^2)+(2x-x-x+2x)+(1-2)\)

\(=2x^4+x^3-x^2+2x-1\)

\(b,(2x+a)(2x-3a)-5a(x+3)\)

\(=4x^2+2ax-6ax-3a^2-5ax-15a\)

\(=4x^2+(2ax-6ax-5ax)-3a^2-15a\)

\(=4x^2-9ax-3a^2-15a\)

Chúc bạn học tốt

a, \(\left(x^3-x+1\right)\left(2x+1\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^4+x^3-2x^2-x+2x+1+x^2+2x-x-2\)

\(=2x^4+x^3-x^2+2x-1\)

b, \(\left(2x+a\right)\left(2x-3a\right)-5a\left(x+3\right)\)

\(=4x^2-6xa+2ax-3a^2-5ax-15a\)

\(=4x^2-9ax-3a^2-15a\)

13 tháng 7 2015

a,  Nghĩa là phân tích phải không

13 tháng 7 2015

\(6x^2-48x-5=6x.\left(x-8\right)-5=...\)

6 tháng 7 2017

a) Ta có : P = (x + 5)(ax2 + bx + 25) 

= ax+ bx2 + 25x + 5ax+ 5bx + 125

= ax3 + (bx2 + 5ax2) + (25x + 5bx) + 125

= ax+ x2(b + 5a) + x(25 + 5b)  + 125

6 tháng 7 2017

a) Ta có : P = (x + 5)(ax2 + bx + 25) 

= ax+ bx2 + 25x + 5ax+ 5bx + 125

= ax3 + (bx2 + 5ax2) + (25x + 5bx) + 125

= ax+ x2(b + 5a) + x(25 + 5b)  + 125

6 tháng 7 2017

b)\(P=ax^3+x^2\left(b+5a\right)+x\left(5b+25\right)+125\)

\(Q=x^3+125\). ĐỒng nhất 2 đa thức ta có:

\(\hept{\begin{cases}ax^3=x^3\\x^2\left(b+5a\right)+x\left(5b+25\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\x^2\left(b+5a\right)+x\left(5b+25\right)=0\end{cases}}\)

\(\Rightarrow x^2\left(b+5\right)+5x\left(b+5\right)=0\)

\(\Rightarrow\left(x^2+5x\right)\left(b+5\right)=0\)

\(\Rightarrow b=-5\). Vậy...