Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
TL ;
A = { x E N / 0 ;1 ; 2 ; 3 ; 4 ; 5 }
B = { x E N / 0 ; 1 ; 2 ; 3 }
C = { x E N / 0 ; 1 }
D = { x E N / 0 ; x ; y }
Chúc bạn học tốt nhé !
Ta có: M= abc/ ab+bc+ca
<=> 1/M = ab+ bc+ ca/ abc= 1/a+ 1/b+ 1/c (1)
Do: ab/ a+2b= 2/5 nên a+2b/ ab= 5/2
<=> 1/b+ 2/a= 5/2 (2)
Tương tự: bc/ b+2c= 3/4 nên b+2c/ bc= 4/3
<=> 1/c+2/b=4/3 (3)
ac/c+2a=3/5 <=> c+2a/ac=5/3
<=> 1/a+2/c=5/3 (4)
Cộng tổng của (2), (3), (4) ta đc:
( 1/b+2/a) + (1/c+2/b)+(1/a+2/c)= 5/2+4/3+5/3
<=> 3/a+3/b+3/c=5/2+3
<=> 3 x (1/a+1/b+1/c)=11/2 (5)
Thay (1) vào (5), ta có: 3 x 1/M = 11/2
<=> 1/M=11/6 <=>M=6/11
Vậy giá trị biểu thức M=6/11
a/ Số cần tìm là bộ số chung nhỏ nhất của 4;7;8
Ta có:
\(4=2^2\)
\(7=7^1\)
\(8=2^3\)
Vậy BSCNN là: \(8.7=56\)
b/ Số cần tìm là bộ số chung nhỏ nhất của 2;3;5;7
Ta có:
\(2=2^1\)
\(3=3^1\)
\(5=5^1\)
\(7=7^1\)
Vậy BSCNN là: \(2.3.5.7=210\)
c/ \(9=3^2\)
\(8=2^3\)
\(\Rightarrow x=BCNN=9.8=72\)
d/ \(6=2.3\)
\(4=2^2\)
\(\Rightarrow BCNN=4.3=12\)
\(\Rightarrow x=12a\left(a\in N\right)\)
\(\Rightarrow16\le12a\le50\)
\(\Rightarrow2\le a\le4\)
\(\Rightarrow a=2;3;4\)
\(\Rightarrow x=24;36;48\)
\(M=\frac{2010}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2010}\)
Hay: \(M=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(M=\frac{a\left(bc\right)}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a.1}{a\left(b+1+bc\right)}\)
\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(M=\frac{bc+b+1}{bc+b+1}=1\)
Vậy M=1
Bài đây tính nhanh nhé ミ★ʟuғғʏ☆мũ☆ʀơм★彡 chứ không phải quy đồng lên đâu :)
a) \(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
\(A=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)
\(A=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}=35-5\frac{7}{32}=35-\frac{167}{32}=\frac{953}{32}\)
b) \(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}:\frac{-7}{3}+2\frac{3}{7}\)
\(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot\frac{-3}{7}+2\frac{3}{7}\)
\(B=\frac{-3}{7}\left(\frac{5}{9}+\frac{4}{9}\right)+2\frac{3}{7}\)
\(B=\frac{-3}{7}+\frac{17}{7}=\frac{14}{7}=2\)
c) \(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right)\cdot\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{2}{8}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)
\(C=6\frac{3}{8}\cdot\frac{4}{5}=\frac{51}{8}\cdot\frac{4}{5}=\frac{51}{2}\cdot\frac{1}{5}=\frac{51}{10}\)
d) \(D=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)\cdot107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)
a) BC (5;3) = {0;15;30;45;...}.
b) BC( 4;20) = {0 ; 20; 40;…}
c) BC (24; 16) = (0;48;96;144...)
d) BC (8; 12; 24) = (0; 24; 48; ...}.