Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/81 = (1/9)^2
243 = 3^5
8. 3^3 = 2^3 . 3^3 = 6^3
81.2^8 = 9^2 . (2^4)^2 = 9^2 . 16^2 = ( 9. 16)^2 = 144^2
\(a,3^2\cdot\frac{1}{243}=3^2\cdot\frac{1}{3^5}=\frac{1}{3^3}=\frac{1^3}{3^3}=\left(\frac{1}{3}\right)^3\)
\(b,81^2\cdot\frac{1}{3^3}=\left(3^4\right)^2\cdot\frac{1}{3^3}=3^8\cdot\frac{1}{3^3}=3^5\)
a) \(3^2.\frac{1}{243}=\frac{1.3^3}{243}=\frac{3^2}{243}=\frac{3^2}{3^5}=\frac{1}{3^3}=\frac{1}{27}\)
b) \(81^2.\frac{1}{3^3}=\frac{1.81^2}{3^3}=\frac{81^2}{3^3}=\frac{3^8}{3^3}=3^5=243\)
Ta có :
\(3.9^3.27^2=3.\left(3^2\right)^3.\left(3^3\right)^2\)
\(=3.3^6.3^6=3^{13}\)
Ta có:
\(\begin{array}{l}{\left( {\frac{1}{9}} \right)^5} = {[{\left( {\frac{1}{3}} \right)^2}]^5} = {(\frac{1}{3})^{2.5}} = {(\frac{1}{3})^{10}};\\{\left( {\frac{1}{{27}}} \right)^7} = {[{(\frac{1}{3})^3}]^7} = {(\frac{1}{3})^{3.7}} = {(\frac{1}{3})^{21}}\end{array}\)
\(1:243=\frac{1}{243}=\left(\frac{1}{3}\right)^5\)
\(1:3=\left(\frac{1}{3}\right)^1\)
\(\frac{1}{9}=\left(\frac{1}{3}\right)^3\)