Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ( 3x + 2)2 - 4
= (3x+2-2)(3x+2+2)
= 3x(3x+4)
2. 4x2 - 25y2
= (2x-5y)(2x+5y)
3. 4x2- 49
=(2x-7)(2x+7)
4. 8z3 + 27
=(2z+3)(4x2-6z+9)
5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)
= \((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)
6. x32 - 1
=(x16-1)(x16+1)
7. 4x2 + 4x + 1
=(2x+1)2
8. x2 - 20x + 100
=(x-10)2
9. y4 -14y2 + 49
=(y2-7)2
10. 125x3 - 64y3
= (5x-4y)(25x2+20xy+16y2)
1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
7) \(4x^2+4x+1=\left(2x+1\right)^2\)
8) \(x^2-20x+100=\left(x-10\right)^2\)
9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)
\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}\right)^2-2.\dfrac{1}{3}.y^4+\left(y^4\right)^2=\left(\dfrac{1}{3}+y^4\right)^2\)
Cho mình sửa lại thành: \(\left(\dfrac{1}{3}-y^4\right)^2\)
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)
\(=0\cdot0\)
\(=0\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x+y\right)\left(x-y\right)\)
1) \(=\left(2z+3\right)\left(4z^2-6z+9\right)\)
2) \(=\left(\frac{3x^2}{5}-\frac{1}{2}\right)\left(\frac{3x^2}{5}+\frac{1}{2}\right)\)
3) \(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
4) \(=\left(2x+1\right)^2\)
5) \(=\left(x-10\right)^2\)
6) \(=\left(y^2-7\right)^2\)
7) \(=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)
Bài 1:
a: \(49-4x^2=\left(7-2x\right)\left(7+2x\right)\)
b: \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
c: \(x^2+18xy+81y^2=\left(x+9y\right)^2\)
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
1) \(\left(3x+2\right)^2-4\\ =\left(3x+2\right)^2-2^2\\ =\left(3x+2-2\right)\left(3x+2+2\right)\\ =3x.\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2+6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2\right)^2-\left(\dfrac{1}{2}\right)^2=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1\\ =\left(x^{16}\right)^2-1^2\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
1: \(\left(3x+2\right)^2-4=3x\left(3x+4\right)\)
2: \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3: \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4: \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5: \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
1: \(4x^2+4x+1=\left(2x+1\right)^2\)
2: \(x^2-20x+100=\left(x-10\right)^2\)
3: \(y^4-14y^2+49=\left(y^2-7\right)^2\)
4: \(125x^3-64y^3=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)