\(a^n,\left(a\in\mathbb{Q},n\in\mathbb{N}\right)\) :<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a) \(3^3\)

b)\(2^8\)

c) \(2^7\)

d) \(3^1\)

22 tháng 6 2017

a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33

b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28

c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27

d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31

5 tháng 7 2016

a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2\)

\(=\frac{3^2\cdot3^3\cdot3^2}{3^4}\)

\(=3^3=27\)

b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)\)

\(=\frac{2^2\cdot2^2\cdot2^4}{2^3}\)

\(=2^5=32\)

c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2\)

\(=\frac{3^2\cdot2^5\cdot2^4}{3^2}\)

\(=2^9=512\)

d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2\)

\(=\frac{1^2\cdot1\cdot3^4}{3^2}\)

\(=3^2=9\)

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

18 tháng 7 2017

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

~ Học tốt ~

18 tháng 7 2017

Bài 1:

1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)

\(=3^2=9\)

2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)

\(=2^7:2^3:\dfrac{1}{2^4}\)

\(=2^4.2^4=256\)

3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)

\(=\dfrac{43}{48}\)

4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=-3-1+\dfrac{1}{8}\)

\(=-4+\dfrac{1}{8}\\ \)

\(=-\dfrac{31}{8}\)

5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)

Chúc bạn học tốt haha

a: \(=2^2\cdot9\cdot\dfrac{1}{6\cdot9}\cdot\dfrac{4^2}{9^2}=\dfrac{2^2}{6}\cdot\dfrac{2^4}{3^4}=\dfrac{2^6}{2\cdot3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)

b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)

c: \(=\dfrac{\left(\dfrac{1}{2}\right)^3\cdot2^3\cdot\left(\dfrac{1}{2}\right)^2}{\left(-8\right)^2\cdot16}\cdot2^6=\dfrac{\dfrac{1}{2^2}}{64\cdot16}\cdot64=\dfrac{1}{4}:16=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\)

a: \(=2^2\cdot9\cdot\dfrac{1}{3^3\cdot2}\cdot\dfrac{2^4}{3^4}=\dfrac{2^4\cdot2^2}{2}\cdot\dfrac{9}{3^3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)

b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)

c: \(=\dfrac{\dfrac{1}{2^3}\cdot\dfrac{1}{2^2}\cdot8}{\left(-8\right)^2\cdot2^4}\cdot2^6=\dfrac{1}{2^2}\cdot2^6:2^{10}=\dfrac{2^4}{2^{10}}=\dfrac{1}{2^6}=\left(\dfrac{1}{8}\right)^2\)

14 tháng 7 2017

a,

\(\left(4x-\dfrac{1}{3}\right)^6=1\\ \Rightarrow\left[{}\begin{matrix}4x-\dfrac{1}{3}=1\\4x-\dfrac{1}{3}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b,

\(\left(5x-\dfrac{2}{3}\right)^2=0\\ \Rightarrow5x-\dfrac{2}{3}=0\\ 5x=\dfrac{2}{3}\\ x=\dfrac{2}{15}\)

c,

\(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\\ \Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-2\\ \dfrac{1}{3}x=\dfrac{-3}{2}\\ x=\dfrac{-9}{2}\)

d,

\(\dfrac{81}{3^n}=3\\ \Leftrightarrow3^4:3^n=3^1\\\Leftrightarrow3^{4-n}=3^1 \\ \Rightarrow n=3\)

e,

\(\dfrac{\left(-2\right)^x}{64}=-2\\ \Leftrightarrow\left(-2\right)^x:\left(-2\right)^6=\left(-2\right)^1\\ \Leftrightarrow\left(-2\right)^{x-6}=\left(-2\right)^1\\ \Rightarrow x=7\)

f,

\(\left(-20\right)^n:10^n=16\\ \left[\left(-20\right):10\right]^n=16\\ \left(-2\right)^n=\left(-2\right)^4\\ \Rightarrow n=4\)

14 tháng 7 2017

Bài 1:

a) \(\left(4x-\dfrac{1}{3}\right)^6=1\)

\(\Rightarrow4x-\dfrac{1}{3}=1\)

\(4x=1+\dfrac{1}{3}\)

\(4x=\dfrac{4}{3}\)

\(x=\dfrac{4}{3}:4\)

\(x=\dfrac{1}{3}\)

b) \(\left(5x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow5x-\dfrac{2}{3}=0\)

\(5x=\dfrac{2}{3}\)

\(x=\dfrac{2}{3}:5\)

\(x=\dfrac{2}{15}\)

c) \(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\)

\(\Rightarrow\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\)

\(\dfrac{1}{3}x-\dfrac{1}{2}=-2\)

\(\dfrac{1}{3}x=-2+\dfrac{1}{2}\)

\(\dfrac{1}{3}x=\dfrac{-3}{2}\)

\(x=\dfrac{-3}{2}:\dfrac{1}{3}\)

\(x=\dfrac{-9}{2}\)

d) \(\dfrac{81}{3^n}=3\)

\(\Rightarrow\dfrac{3^4}{3^n}=3\)

\(\Rightarrow3^n.3=3^4\)

\(3^{n+1}=3^4\)

n + 1 = 4

n = 4 - 1

n = 3

e) \(\dfrac{\left(-2\right)^x}{64}=-2\)

\(\Rightarrow\dfrac{\left(-2\right)^x}{\left(-2\right)^6}=-2\)

\(\Rightarrow\left(-2\right)^x=\left(-2\right)^6.\left(-2\right)\)

\(\left(-2\right)^x=\left(-2\right)^7\)

x = 7

f) (-20)n : 10n = 16

(-20 : 10)n = 16

(-2)n = 16

(-2)n = (-2)4

n = 4.

1 tháng 8 2017

làm bài 3 BĐT

theo bảng xét dấu

còn bài 1,2 ở trên là 1.1 và 1.2 đều trg bài 1.2

bài 1.2 (tức bài 2 ở trên )làm a,b,c,d

\còn bài 2( tức bài 2 ở trên) làm hết

1 tháng 8 2017

thanks

10 tháng 6 2017

a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

b) Vì \(\left(x-2\right)^2=1\Rightarrow\left\{{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy x = 4 hoặc x = 0

c) Vì \(\left(2.x-1\right)^3=-8\Rightarrow2.x-1=-2\Rightarrow2.x=-1\Rightarrow x=-\dfrac{1}{2}\)

d) Vì \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

23 tháng 6 2017

a) \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

b) \(\left(x-2\right)^2=1\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=-2\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)

20 tháng 9 2015

d,\(=\frac{1}{3^2}\cdot\frac{1}{3}\cdot\left(3^2\right)^2=\frac{3^4}{3^3}=3\)

20 tháng 9 2015

b,\(=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^7\cdot2=2^8\)