\(\in\)Q,n\(\in\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

\(a,9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^{\left(-4\right)}.3^2=3^{2+3-4+2}=3^3.\)

\(b,4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.2^{-4}\right)=2^{2+5}:2^{3-4}=2^7:2^{-1}=2^{7-\left(-1\right)}=2^8.\)

\(c,3^2.2^5.\left(\frac{2}{3}\right)^2=3^2.2^5.\frac{2^2}{3^2}=\left(\frac{3^2}{3^2}\right).\left(2^5.2^2\right)=1.2^{5+2}=2^7\)

\(d,\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^2.\frac{1}{3}.\left(3^2\right)^2=\left(\frac{1}{3}\right)^{2+1}.3^4=\left(\frac{1}{3}\right)^3.\left(\frac{1}{3}\right)^{-4}=\left(\frac{1}{3}\right)^{3-4}=\left(\frac{1}{3}\right)^{-1}=3^1\)

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

16 tháng 10 2016

a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)

e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)

g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)

h)Tương tự các câu trên

i) x = 0

k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)

l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)

=> x + 1 = 3 => x = 2

16 tháng 10 2016

x.(x+1)=0

suy ra x=0 hoac x+1=0

                               x=0-1

                              x=-1

vay x=0 hoac  x=-1

mấy câu sau cũng làm tương tự

12 tháng 12 2019

a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)

\(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)

=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)

\(\frac{-5}{12}-\frac{8}{5}\)

\(\frac{\left(-25\right)-96}{60}\)

\(\frac{\left(-25\right)+\left(-96\right)}{60}\)

=\(\frac{121}{60}\)

b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)

\(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)

=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)

\(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)

=\(\frac{-29}{24}\)

c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{3}{5}\)

d)\(\frac{5^4.20^4}{25^5.4^5}\)

=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)

=\(\frac{100^4}{100^5}\)

=\(\frac{1}{100}\)